root / src / blas / zher2.f @ 8
Historique | Voir | Annoter | Télécharger (7,91 ko)
1 |
SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE COMPLEX ALPHA |
4 |
INTEGER INCX,INCY,LDA,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX A(LDA,*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHER2 performs the hermitian rank 2 operation |
15 |
* |
16 |
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
17 |
* |
18 |
* where alpha is a scalar, x and y are n element vectors and A is an n |
19 |
* by n hermitian matrix. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the array A is to be referenced as |
27 |
* follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' Only the upper triangular part of A |
30 |
* is to be referenced. |
31 |
* |
32 |
* UPLO = 'L' or 'l' Only the lower triangular part of A |
33 |
* is to be referenced. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - COMPLEX*16 . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* X - COMPLEX*16 array of dimension at least |
47 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
48 |
* Before entry, the incremented array X must contain the n |
49 |
* element vector x. |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* INCX - INTEGER. |
53 |
* On entry, INCX specifies the increment for the elements of |
54 |
* X. INCX must not be zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* Y - COMPLEX*16 array of dimension at least |
58 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
59 |
* Before entry, the incremented array Y must contain the n |
60 |
* element vector y. |
61 |
* Unchanged on exit. |
62 |
* |
63 |
* INCY - INTEGER. |
64 |
* On entry, INCY specifies the increment for the elements of |
65 |
* Y. INCY must not be zero. |
66 |
* Unchanged on exit. |
67 |
* |
68 |
* A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
69 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
70 |
* upper triangular part of the array A must contain the upper |
71 |
* triangular part of the hermitian matrix and the strictly |
72 |
* lower triangular part of A is not referenced. On exit, the |
73 |
* upper triangular part of the array A is overwritten by the |
74 |
* upper triangular part of the updated matrix. |
75 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
76 |
* lower triangular part of the array A must contain the lower |
77 |
* triangular part of the hermitian matrix and the strictly |
78 |
* upper triangular part of A is not referenced. On exit, the |
79 |
* lower triangular part of the array A is overwritten by the |
80 |
* lower triangular part of the updated matrix. |
81 |
* Note that the imaginary parts of the diagonal elements need |
82 |
* not be set, they are assumed to be zero, and on exit they |
83 |
* are set to zero. |
84 |
* |
85 |
* LDA - INTEGER. |
86 |
* On entry, LDA specifies the first dimension of A as declared |
87 |
* in the calling (sub) program. LDA must be at least |
88 |
* max( 1, n ). |
89 |
* Unchanged on exit. |
90 |
* |
91 |
* |
92 |
* Level 2 Blas routine. |
93 |
* |
94 |
* -- Written on 22-October-1986. |
95 |
* Jack Dongarra, Argonne National Lab. |
96 |
* Jeremy Du Croz, Nag Central Office. |
97 |
* Sven Hammarling, Nag Central Office. |
98 |
* Richard Hanson, Sandia National Labs. |
99 |
* |
100 |
* |
101 |
* .. Parameters .. |
102 |
DOUBLE COMPLEX ZERO |
103 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
104 |
* .. |
105 |
* .. Local Scalars .. |
106 |
DOUBLE COMPLEX TEMP1,TEMP2 |
107 |
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY |
108 |
* .. |
109 |
* .. External Functions .. |
110 |
LOGICAL LSAME |
111 |
EXTERNAL LSAME |
112 |
* .. |
113 |
* .. External Subroutines .. |
114 |
EXTERNAL XERBLA |
115 |
* .. |
116 |
* .. Intrinsic Functions .. |
117 |
INTRINSIC DBLE,DCONJG,MAX |
118 |
* .. |
119 |
* |
120 |
* Test the input parameters. |
121 |
* |
122 |
INFO = 0 |
123 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
124 |
INFO = 1 |
125 |
ELSE IF (N.LT.0) THEN |
126 |
INFO = 2 |
127 |
ELSE IF (INCX.EQ.0) THEN |
128 |
INFO = 5 |
129 |
ELSE IF (INCY.EQ.0) THEN |
130 |
INFO = 7 |
131 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
132 |
INFO = 9 |
133 |
END IF |
134 |
IF (INFO.NE.0) THEN |
135 |
CALL XERBLA('ZHER2 ',INFO) |
136 |
RETURN |
137 |
END IF |
138 |
* |
139 |
* Quick return if possible. |
140 |
* |
141 |
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
142 |
* |
143 |
* Set up the start points in X and Y if the increments are not both |
144 |
* unity. |
145 |
* |
146 |
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN |
147 |
IF (INCX.GT.0) THEN |
148 |
KX = 1 |
149 |
ELSE |
150 |
KX = 1 - (N-1)*INCX |
151 |
END IF |
152 |
IF (INCY.GT.0) THEN |
153 |
KY = 1 |
154 |
ELSE |
155 |
KY = 1 - (N-1)*INCY |
156 |
END IF |
157 |
JX = KX |
158 |
JY = KY |
159 |
END IF |
160 |
* |
161 |
* Start the operations. In this version the elements of A are |
162 |
* accessed sequentially with one pass through the triangular part |
163 |
* of A. |
164 |
* |
165 |
IF (LSAME(UPLO,'U')) THEN |
166 |
* |
167 |
* Form A when A is stored in the upper triangle. |
168 |
* |
169 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
170 |
DO 20 J = 1,N |
171 |
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN |
172 |
TEMP1 = ALPHA*DCONJG(Y(J)) |
173 |
TEMP2 = DCONJG(ALPHA*X(J)) |
174 |
DO 10 I = 1,J - 1 |
175 |
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 |
176 |
10 CONTINUE |
177 |
A(J,J) = DBLE(A(J,J)) + |
178 |
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2) |
179 |
ELSE |
180 |
A(J,J) = DBLE(A(J,J)) |
181 |
END IF |
182 |
20 CONTINUE |
183 |
ELSE |
184 |
DO 40 J = 1,N |
185 |
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN |
186 |
TEMP1 = ALPHA*DCONJG(Y(JY)) |
187 |
TEMP2 = DCONJG(ALPHA*X(JX)) |
188 |
IX = KX |
189 |
IY = KY |
190 |
DO 30 I = 1,J - 1 |
191 |
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 |
192 |
IX = IX + INCX |
193 |
IY = IY + INCY |
194 |
30 CONTINUE |
195 |
A(J,J) = DBLE(A(J,J)) + |
196 |
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) |
197 |
ELSE |
198 |
A(J,J) = DBLE(A(J,J)) |
199 |
END IF |
200 |
JX = JX + INCX |
201 |
JY = JY + INCY |
202 |
40 CONTINUE |
203 |
END IF |
204 |
ELSE |
205 |
* |
206 |
* Form A when A is stored in the lower triangle. |
207 |
* |
208 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
209 |
DO 60 J = 1,N |
210 |
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN |
211 |
TEMP1 = ALPHA*DCONJG(Y(J)) |
212 |
TEMP2 = DCONJG(ALPHA*X(J)) |
213 |
A(J,J) = DBLE(A(J,J)) + |
214 |
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2) |
215 |
DO 50 I = J + 1,N |
216 |
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 |
217 |
50 CONTINUE |
218 |
ELSE |
219 |
A(J,J) = DBLE(A(J,J)) |
220 |
END IF |
221 |
60 CONTINUE |
222 |
ELSE |
223 |
DO 80 J = 1,N |
224 |
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN |
225 |
TEMP1 = ALPHA*DCONJG(Y(JY)) |
226 |
TEMP2 = DCONJG(ALPHA*X(JX)) |
227 |
A(J,J) = DBLE(A(J,J)) + |
228 |
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) |
229 |
IX = JX |
230 |
IY = JY |
231 |
DO 70 I = J + 1,N |
232 |
IX = IX + INCX |
233 |
IY = IY + INCY |
234 |
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 |
235 |
70 CONTINUE |
236 |
ELSE |
237 |
A(J,J) = DBLE(A(J,J)) |
238 |
END IF |
239 |
JX = JX + INCX |
240 |
JY = JY + INCY |
241 |
80 CONTINUE |
242 |
END IF |
243 |
END IF |
244 |
* |
245 |
RETURN |
246 |
* |
247 |
* End of ZHER2 . |
248 |
* |
249 |
END |