root / src / blas / zhemv.f @ 8
Historique | Voir | Annoter | Télécharger (7,87 ko)
1 |
SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
DOUBLE COMPLEX ALPHA,BETA |
4 |
INTEGER INCX,INCY,LDA,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
DOUBLE COMPLEX A(LDA,*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* ZHEMV performs the matrix-vector operation |
15 |
* |
16 |
* y := alpha*A*x + beta*y, |
17 |
* |
18 |
* where alpha and beta are scalars, x and y are n element vectors and |
19 |
* A is an n by n hermitian matrix. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the array A is to be referenced as |
27 |
* follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' Only the upper triangular part of A |
30 |
* is to be referenced. |
31 |
* |
32 |
* UPLO = 'L' or 'l' Only the lower triangular part of A |
33 |
* is to be referenced. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - COMPLEX*16 . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
47 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
48 |
* upper triangular part of the array A must contain the upper |
49 |
* triangular part of the hermitian matrix and the strictly |
50 |
* lower triangular part of A is not referenced. |
51 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
52 |
* lower triangular part of the array A must contain the lower |
53 |
* triangular part of the hermitian matrix and the strictly |
54 |
* upper triangular part of A is not referenced. |
55 |
* Note that the imaginary parts of the diagonal elements need |
56 |
* not be set and are assumed to be zero. |
57 |
* Unchanged on exit. |
58 |
* |
59 |
* LDA - INTEGER. |
60 |
* On entry, LDA specifies the first dimension of A as declared |
61 |
* in the calling (sub) program. LDA must be at least |
62 |
* max( 1, n ). |
63 |
* Unchanged on exit. |
64 |
* |
65 |
* X - COMPLEX*16 array of dimension at least |
66 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
67 |
* Before entry, the incremented array X must contain the n |
68 |
* element vector x. |
69 |
* Unchanged on exit. |
70 |
* |
71 |
* INCX - INTEGER. |
72 |
* On entry, INCX specifies the increment for the elements of |
73 |
* X. INCX must not be zero. |
74 |
* Unchanged on exit. |
75 |
* |
76 |
* BETA - COMPLEX*16 . |
77 |
* On entry, BETA specifies the scalar beta. When BETA is |
78 |
* supplied as zero then Y need not be set on input. |
79 |
* Unchanged on exit. |
80 |
* |
81 |
* Y - COMPLEX*16 array of dimension at least |
82 |
* ( 1 + ( n - 1 )*abs( INCY ) ). |
83 |
* Before entry, the incremented array Y must contain the n |
84 |
* element vector y. On exit, Y is overwritten by the updated |
85 |
* vector y. |
86 |
* |
87 |
* INCY - INTEGER. |
88 |
* On entry, INCY specifies the increment for the elements of |
89 |
* Y. INCY must not be zero. |
90 |
* Unchanged on exit. |
91 |
* |
92 |
* |
93 |
* Level 2 Blas routine. |
94 |
* |
95 |
* -- Written on 22-October-1986. |
96 |
* Jack Dongarra, Argonne National Lab. |
97 |
* Jeremy Du Croz, Nag Central Office. |
98 |
* Sven Hammarling, Nag Central Office. |
99 |
* Richard Hanson, Sandia National Labs. |
100 |
* |
101 |
* |
102 |
* .. Parameters .. |
103 |
DOUBLE COMPLEX ONE |
104 |
PARAMETER (ONE= (1.0D+0,0.0D+0)) |
105 |
DOUBLE COMPLEX ZERO |
106 |
PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
107 |
* .. |
108 |
* .. Local Scalars .. |
109 |
DOUBLE COMPLEX TEMP1,TEMP2 |
110 |
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY |
111 |
* .. |
112 |
* .. External Functions .. |
113 |
LOGICAL LSAME |
114 |
EXTERNAL LSAME |
115 |
* .. |
116 |
* .. External Subroutines .. |
117 |
EXTERNAL XERBLA |
118 |
* .. |
119 |
* .. Intrinsic Functions .. |
120 |
INTRINSIC DBLE,DCONJG,MAX |
121 |
* .. |
122 |
* |
123 |
* Test the input parameters. |
124 |
* |
125 |
INFO = 0 |
126 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
127 |
INFO = 1 |
128 |
ELSE IF (N.LT.0) THEN |
129 |
INFO = 2 |
130 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
131 |
INFO = 5 |
132 |
ELSE IF (INCX.EQ.0) THEN |
133 |
INFO = 7 |
134 |
ELSE IF (INCY.EQ.0) THEN |
135 |
INFO = 10 |
136 |
END IF |
137 |
IF (INFO.NE.0) THEN |
138 |
CALL XERBLA('ZHEMV ',INFO) |
139 |
RETURN |
140 |
END IF |
141 |
* |
142 |
* Quick return if possible. |
143 |
* |
144 |
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
145 |
* |
146 |
* Set up the start points in X and Y. |
147 |
* |
148 |
IF (INCX.GT.0) THEN |
149 |
KX = 1 |
150 |
ELSE |
151 |
KX = 1 - (N-1)*INCX |
152 |
END IF |
153 |
IF (INCY.GT.0) THEN |
154 |
KY = 1 |
155 |
ELSE |
156 |
KY = 1 - (N-1)*INCY |
157 |
END IF |
158 |
* |
159 |
* Start the operations. In this version the elements of A are |
160 |
* accessed sequentially with one pass through the triangular part |
161 |
* of A. |
162 |
* |
163 |
* First form y := beta*y. |
164 |
* |
165 |
IF (BETA.NE.ONE) THEN |
166 |
IF (INCY.EQ.1) THEN |
167 |
IF (BETA.EQ.ZERO) THEN |
168 |
DO 10 I = 1,N |
169 |
Y(I) = ZERO |
170 |
10 CONTINUE |
171 |
ELSE |
172 |
DO 20 I = 1,N |
173 |
Y(I) = BETA*Y(I) |
174 |
20 CONTINUE |
175 |
END IF |
176 |
ELSE |
177 |
IY = KY |
178 |
IF (BETA.EQ.ZERO) THEN |
179 |
DO 30 I = 1,N |
180 |
Y(IY) = ZERO |
181 |
IY = IY + INCY |
182 |
30 CONTINUE |
183 |
ELSE |
184 |
DO 40 I = 1,N |
185 |
Y(IY) = BETA*Y(IY) |
186 |
IY = IY + INCY |
187 |
40 CONTINUE |
188 |
END IF |
189 |
END IF |
190 |
END IF |
191 |
IF (ALPHA.EQ.ZERO) RETURN |
192 |
IF (LSAME(UPLO,'U')) THEN |
193 |
* |
194 |
* Form y when A is stored in upper triangle. |
195 |
* |
196 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
197 |
DO 60 J = 1,N |
198 |
TEMP1 = ALPHA*X(J) |
199 |
TEMP2 = ZERO |
200 |
DO 50 I = 1,J - 1 |
201 |
Y(I) = Y(I) + TEMP1*A(I,J) |
202 |
TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I) |
203 |
50 CONTINUE |
204 |
Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2 |
205 |
60 CONTINUE |
206 |
ELSE |
207 |
JX = KX |
208 |
JY = KY |
209 |
DO 80 J = 1,N |
210 |
TEMP1 = ALPHA*X(JX) |
211 |
TEMP2 = ZERO |
212 |
IX = KX |
213 |
IY = KY |
214 |
DO 70 I = 1,J - 1 |
215 |
Y(IY) = Y(IY) + TEMP1*A(I,J) |
216 |
TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX) |
217 |
IX = IX + INCX |
218 |
IY = IY + INCY |
219 |
70 CONTINUE |
220 |
Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2 |
221 |
JX = JX + INCX |
222 |
JY = JY + INCY |
223 |
80 CONTINUE |
224 |
END IF |
225 |
ELSE |
226 |
* |
227 |
* Form y when A is stored in lower triangle. |
228 |
* |
229 |
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
230 |
DO 100 J = 1,N |
231 |
TEMP1 = ALPHA*X(J) |
232 |
TEMP2 = ZERO |
233 |
Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) |
234 |
DO 90 I = J + 1,N |
235 |
Y(I) = Y(I) + TEMP1*A(I,J) |
236 |
TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I) |
237 |
90 CONTINUE |
238 |
Y(J) = Y(J) + ALPHA*TEMP2 |
239 |
100 CONTINUE |
240 |
ELSE |
241 |
JX = KX |
242 |
JY = KY |
243 |
DO 120 J = 1,N |
244 |
TEMP1 = ALPHA*X(JX) |
245 |
TEMP2 = ZERO |
246 |
Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) |
247 |
IX = JX |
248 |
IY = JY |
249 |
DO 110 I = J + 1,N |
250 |
IX = IX + INCX |
251 |
IY = IY + INCY |
252 |
Y(IY) = Y(IY) + TEMP1*A(I,J) |
253 |
TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX) |
254 |
110 CONTINUE |
255 |
Y(JY) = Y(JY) + ALPHA*TEMP2 |
256 |
JX = JX + INCX |
257 |
JY = JY + INCY |
258 |
120 CONTINUE |
259 |
END IF |
260 |
END IF |
261 |
* |
262 |
RETURN |
263 |
* |
264 |
* End of ZHEMV . |
265 |
* |
266 |
END |