root / src / blas / ssyr.f @ 8
Historique | Voir | Annoter | Télécharger (5,68 ko)
1 |
SUBROUTINE SSYR(UPLO,N,ALPHA,X,INCX,A,LDA) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
REAL ALPHA |
4 |
INTEGER INCX,LDA,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
REAL A(LDA,*),X(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* SSYR performs the symmetric rank 1 operation |
15 |
* |
16 |
* A := alpha*x*x' + A, |
17 |
* |
18 |
* where alpha is a real scalar, x is an n element vector and A is an |
19 |
* n by n symmetric matrix. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the array A is to be referenced as |
27 |
* follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' Only the upper triangular part of A |
30 |
* is to be referenced. |
31 |
* |
32 |
* UPLO = 'L' or 'l' Only the lower triangular part of A |
33 |
* is to be referenced. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - REAL . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* X - REAL array of dimension at least |
47 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
48 |
* Before entry, the incremented array X must contain the n |
49 |
* element vector x. |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* INCX - INTEGER. |
53 |
* On entry, INCX specifies the increment for the elements of |
54 |
* X. INCX must not be zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* A - REAL array of DIMENSION ( LDA, n ). |
58 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
59 |
* upper triangular part of the array A must contain the upper |
60 |
* triangular part of the symmetric matrix and the strictly |
61 |
* lower triangular part of A is not referenced. On exit, the |
62 |
* upper triangular part of the array A is overwritten by the |
63 |
* upper triangular part of the updated matrix. |
64 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
65 |
* lower triangular part of the array A must contain the lower |
66 |
* triangular part of the symmetric matrix and the strictly |
67 |
* upper triangular part of A is not referenced. On exit, the |
68 |
* lower triangular part of the array A is overwritten by the |
69 |
* lower triangular part of the updated matrix. |
70 |
* |
71 |
* LDA - INTEGER. |
72 |
* On entry, LDA specifies the first dimension of A as declared |
73 |
* in the calling (sub) program. LDA must be at least |
74 |
* max( 1, n ). |
75 |
* Unchanged on exit. |
76 |
* |
77 |
* |
78 |
* Level 2 Blas routine. |
79 |
* |
80 |
* -- Written on 22-October-1986. |
81 |
* Jack Dongarra, Argonne National Lab. |
82 |
* Jeremy Du Croz, Nag Central Office. |
83 |
* Sven Hammarling, Nag Central Office. |
84 |
* Richard Hanson, Sandia National Labs. |
85 |
* |
86 |
* |
87 |
* .. Parameters .. |
88 |
REAL ZERO |
89 |
PARAMETER (ZERO=0.0E+0) |
90 |
* .. |
91 |
* .. Local Scalars .. |
92 |
REAL TEMP |
93 |
INTEGER I,INFO,IX,J,JX,KX |
94 |
* .. |
95 |
* .. External Functions .. |
96 |
LOGICAL LSAME |
97 |
EXTERNAL LSAME |
98 |
* .. |
99 |
* .. External Subroutines .. |
100 |
EXTERNAL XERBLA |
101 |
* .. |
102 |
* .. Intrinsic Functions .. |
103 |
INTRINSIC MAX |
104 |
* .. |
105 |
* |
106 |
* Test the input parameters. |
107 |
* |
108 |
INFO = 0 |
109 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
110 |
INFO = 1 |
111 |
ELSE IF (N.LT.0) THEN |
112 |
INFO = 2 |
113 |
ELSE IF (INCX.EQ.0) THEN |
114 |
INFO = 5 |
115 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
116 |
INFO = 7 |
117 |
END IF |
118 |
IF (INFO.NE.0) THEN |
119 |
CALL XERBLA('SSYR ',INFO) |
120 |
RETURN |
121 |
END IF |
122 |
* |
123 |
* Quick return if possible. |
124 |
* |
125 |
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
126 |
* |
127 |
* Set the start point in X if the increment is not unity. |
128 |
* |
129 |
IF (INCX.LE.0) THEN |
130 |
KX = 1 - (N-1)*INCX |
131 |
ELSE IF (INCX.NE.1) THEN |
132 |
KX = 1 |
133 |
END IF |
134 |
* |
135 |
* Start the operations. In this version the elements of A are |
136 |
* accessed sequentially with one pass through the triangular part |
137 |
* of A. |
138 |
* |
139 |
IF (LSAME(UPLO,'U')) THEN |
140 |
* |
141 |
* Form A when A is stored in upper triangle. |
142 |
* |
143 |
IF (INCX.EQ.1) THEN |
144 |
DO 20 J = 1,N |
145 |
IF (X(J).NE.ZERO) THEN |
146 |
TEMP = ALPHA*X(J) |
147 |
DO 10 I = 1,J |
148 |
A(I,J) = A(I,J) + X(I)*TEMP |
149 |
10 CONTINUE |
150 |
END IF |
151 |
20 CONTINUE |
152 |
ELSE |
153 |
JX = KX |
154 |
DO 40 J = 1,N |
155 |
IF (X(JX).NE.ZERO) THEN |
156 |
TEMP = ALPHA*X(JX) |
157 |
IX = KX |
158 |
DO 30 I = 1,J |
159 |
A(I,J) = A(I,J) + X(IX)*TEMP |
160 |
IX = IX + INCX |
161 |
30 CONTINUE |
162 |
END IF |
163 |
JX = JX + INCX |
164 |
40 CONTINUE |
165 |
END IF |
166 |
ELSE |
167 |
* |
168 |
* Form A when A is stored in lower triangle. |
169 |
* |
170 |
IF (INCX.EQ.1) THEN |
171 |
DO 60 J = 1,N |
172 |
IF (X(J).NE.ZERO) THEN |
173 |
TEMP = ALPHA*X(J) |
174 |
DO 50 I = J,N |
175 |
A(I,J) = A(I,J) + X(I)*TEMP |
176 |
50 CONTINUE |
177 |
END IF |
178 |
60 CONTINUE |
179 |
ELSE |
180 |
JX = KX |
181 |
DO 80 J = 1,N |
182 |
IF (X(JX).NE.ZERO) THEN |
183 |
TEMP = ALPHA*X(JX) |
184 |
IX = JX |
185 |
DO 70 I = J,N |
186 |
A(I,J) = A(I,J) + X(IX)*TEMP |
187 |
IX = IX + INCX |
188 |
70 CONTINUE |
189 |
END IF |
190 |
JX = JX + INCX |
191 |
80 CONTINUE |
192 |
END IF |
193 |
END IF |
194 |
* |
195 |
RETURN |
196 |
* |
197 |
* End of SSYR . |
198 |
* |
199 |
END |