root / src / blas / sgemv.f @ 8
Historique | Voir | Annoter | Télécharger (7,1 ko)
1 |
SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
REAL ALPHA,BETA |
4 |
INTEGER INCX,INCY,LDA,M,N |
5 |
CHARACTER TRANS |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
REAL A(LDA,*),X(*),Y(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* SGEMV performs one of the matrix-vector operations |
15 |
* |
16 |
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
17 |
* |
18 |
* where alpha and beta are scalars, x and y are vectors and A is an |
19 |
* m by n matrix. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* TRANS - CHARACTER*1. |
25 |
* On entry, TRANS specifies the operation to be performed as |
26 |
* follows: |
27 |
* |
28 |
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
29 |
* |
30 |
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
31 |
* |
32 |
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
33 |
* |
34 |
* Unchanged on exit. |
35 |
* |
36 |
* M - INTEGER. |
37 |
* On entry, M specifies the number of rows of the matrix A. |
38 |
* M must be at least zero. |
39 |
* Unchanged on exit. |
40 |
* |
41 |
* N - INTEGER. |
42 |
* On entry, N specifies the number of columns of the matrix A. |
43 |
* N must be at least zero. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* ALPHA - REAL . |
47 |
* On entry, ALPHA specifies the scalar alpha. |
48 |
* Unchanged on exit. |
49 |
* |
50 |
* A - REAL array of DIMENSION ( LDA, n ). |
51 |
* Before entry, the leading m by n part of the array A must |
52 |
* contain the matrix of coefficients. |
53 |
* Unchanged on exit. |
54 |
* |
55 |
* LDA - INTEGER. |
56 |
* On entry, LDA specifies the first dimension of A as declared |
57 |
* in the calling (sub) program. LDA must be at least |
58 |
* max( 1, m ). |
59 |
* Unchanged on exit. |
60 |
* |
61 |
* X - REAL array of DIMENSION at least |
62 |
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
63 |
* and at least |
64 |
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
65 |
* Before entry, the incremented array X must contain the |
66 |
* vector x. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* INCX - INTEGER. |
70 |
* On entry, INCX specifies the increment for the elements of |
71 |
* X. INCX must not be zero. |
72 |
* Unchanged on exit. |
73 |
* |
74 |
* BETA - REAL . |
75 |
* On entry, BETA specifies the scalar beta. When BETA is |
76 |
* supplied as zero then Y need not be set on input. |
77 |
* Unchanged on exit. |
78 |
* |
79 |
* Y - REAL array of DIMENSION at least |
80 |
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
81 |
* and at least |
82 |
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
83 |
* Before entry with BETA non-zero, the incremented array Y |
84 |
* must contain the vector y. On exit, Y is overwritten by the |
85 |
* updated vector y. |
86 |
* |
87 |
* INCY - INTEGER. |
88 |
* On entry, INCY specifies the increment for the elements of |
89 |
* Y. INCY must not be zero. |
90 |
* Unchanged on exit. |
91 |
* |
92 |
* |
93 |
* Level 2 Blas routine. |
94 |
* |
95 |
* -- Written on 22-October-1986. |
96 |
* Jack Dongarra, Argonne National Lab. |
97 |
* Jeremy Du Croz, Nag Central Office. |
98 |
* Sven Hammarling, Nag Central Office. |
99 |
* Richard Hanson, Sandia National Labs. |
100 |
* |
101 |
* |
102 |
* .. Parameters .. |
103 |
REAL ONE,ZERO |
104 |
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
105 |
* .. |
106 |
* .. Local Scalars .. |
107 |
REAL TEMP |
108 |
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY |
109 |
* .. |
110 |
* .. External Functions .. |
111 |
LOGICAL LSAME |
112 |
EXTERNAL LSAME |
113 |
* .. |
114 |
* .. External Subroutines .. |
115 |
EXTERNAL XERBLA |
116 |
* .. |
117 |
* .. Intrinsic Functions .. |
118 |
INTRINSIC MAX |
119 |
* .. |
120 |
* |
121 |
* Test the input parameters. |
122 |
* |
123 |
INFO = 0 |
124 |
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
125 |
+ .NOT.LSAME(TRANS,'C')) THEN |
126 |
INFO = 1 |
127 |
ELSE IF (M.LT.0) THEN |
128 |
INFO = 2 |
129 |
ELSE IF (N.LT.0) THEN |
130 |
INFO = 3 |
131 |
ELSE IF (LDA.LT.MAX(1,M)) THEN |
132 |
INFO = 6 |
133 |
ELSE IF (INCX.EQ.0) THEN |
134 |
INFO = 8 |
135 |
ELSE IF (INCY.EQ.0) THEN |
136 |
INFO = 11 |
137 |
END IF |
138 |
IF (INFO.NE.0) THEN |
139 |
CALL XERBLA('SGEMV ',INFO) |
140 |
RETURN |
141 |
END IF |
142 |
* |
143 |
* Quick return if possible. |
144 |
* |
145 |
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
146 |
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
147 |
* |
148 |
* Set LENX and LENY, the lengths of the vectors x and y, and set |
149 |
* up the start points in X and Y. |
150 |
* |
151 |
IF (LSAME(TRANS,'N')) THEN |
152 |
LENX = N |
153 |
LENY = M |
154 |
ELSE |
155 |
LENX = M |
156 |
LENY = N |
157 |
END IF |
158 |
IF (INCX.GT.0) THEN |
159 |
KX = 1 |
160 |
ELSE |
161 |
KX = 1 - (LENX-1)*INCX |
162 |
END IF |
163 |
IF (INCY.GT.0) THEN |
164 |
KY = 1 |
165 |
ELSE |
166 |
KY = 1 - (LENY-1)*INCY |
167 |
END IF |
168 |
* |
169 |
* Start the operations. In this version the elements of A are |
170 |
* accessed sequentially with one pass through A. |
171 |
* |
172 |
* First form y := beta*y. |
173 |
* |
174 |
IF (BETA.NE.ONE) THEN |
175 |
IF (INCY.EQ.1) THEN |
176 |
IF (BETA.EQ.ZERO) THEN |
177 |
DO 10 I = 1,LENY |
178 |
Y(I) = ZERO |
179 |
10 CONTINUE |
180 |
ELSE |
181 |
DO 20 I = 1,LENY |
182 |
Y(I) = BETA*Y(I) |
183 |
20 CONTINUE |
184 |
END IF |
185 |
ELSE |
186 |
IY = KY |
187 |
IF (BETA.EQ.ZERO) THEN |
188 |
DO 30 I = 1,LENY |
189 |
Y(IY) = ZERO |
190 |
IY = IY + INCY |
191 |
30 CONTINUE |
192 |
ELSE |
193 |
DO 40 I = 1,LENY |
194 |
Y(IY) = BETA*Y(IY) |
195 |
IY = IY + INCY |
196 |
40 CONTINUE |
197 |
END IF |
198 |
END IF |
199 |
END IF |
200 |
IF (ALPHA.EQ.ZERO) RETURN |
201 |
IF (LSAME(TRANS,'N')) THEN |
202 |
* |
203 |
* Form y := alpha*A*x + y. |
204 |
* |
205 |
JX = KX |
206 |
IF (INCY.EQ.1) THEN |
207 |
DO 60 J = 1,N |
208 |
IF (X(JX).NE.ZERO) THEN |
209 |
TEMP = ALPHA*X(JX) |
210 |
DO 50 I = 1,M |
211 |
Y(I) = Y(I) + TEMP*A(I,J) |
212 |
50 CONTINUE |
213 |
END IF |
214 |
JX = JX + INCX |
215 |
60 CONTINUE |
216 |
ELSE |
217 |
DO 80 J = 1,N |
218 |
IF (X(JX).NE.ZERO) THEN |
219 |
TEMP = ALPHA*X(JX) |
220 |
IY = KY |
221 |
DO 70 I = 1,M |
222 |
Y(IY) = Y(IY) + TEMP*A(I,J) |
223 |
IY = IY + INCY |
224 |
70 CONTINUE |
225 |
END IF |
226 |
JX = JX + INCX |
227 |
80 CONTINUE |
228 |
END IF |
229 |
ELSE |
230 |
* |
231 |
* Form y := alpha*A'*x + y. |
232 |
* |
233 |
JY = KY |
234 |
IF (INCX.EQ.1) THEN |
235 |
DO 100 J = 1,N |
236 |
TEMP = ZERO |
237 |
DO 90 I = 1,M |
238 |
TEMP = TEMP + A(I,J)*X(I) |
239 |
90 CONTINUE |
240 |
Y(JY) = Y(JY) + ALPHA*TEMP |
241 |
JY = JY + INCY |
242 |
100 CONTINUE |
243 |
ELSE |
244 |
DO 120 J = 1,N |
245 |
TEMP = ZERO |
246 |
IX = KX |
247 |
DO 110 I = 1,M |
248 |
TEMP = TEMP + A(I,J)*X(IX) |
249 |
IX = IX + INCX |
250 |
110 CONTINUE |
251 |
Y(JY) = Y(JY) + ALPHA*TEMP |
252 |
JY = JY + INCY |
253 |
120 CONTINUE |
254 |
END IF |
255 |
END IF |
256 |
* |
257 |
RETURN |
258 |
* |
259 |
* End of SGEMV . |
260 |
* |
261 |
END |