Statistiques
| Révision :

root / src / blas / dtrsv.f @ 8

Historique | Voir | Annoter | Télécharger (8,57 ko)

1
      SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,LDA,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      DOUBLE PRECISION A(LDA,*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  DTRSV  solves one of the systems of equations
14
*
15
*     A*x = b,   or   A'*x = b,
16
*
17
*  where b and x are n element vectors and A is an n by n unit, or
18
*  non-unit, upper or lower triangular matrix.
19
*
20
*  No test for singularity or near-singularity is included in this
21
*  routine. Such tests must be performed before calling this routine.
22
*
23
*  Arguments
24
*  ==========
25
*
26
*  UPLO   - CHARACTER*1.
27
*           On entry, UPLO specifies whether the matrix is an upper or
28
*           lower triangular matrix as follows:
29
*
30
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
31
*
32
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
33
*
34
*           Unchanged on exit.
35
*
36
*  TRANS  - CHARACTER*1.
37
*           On entry, TRANS specifies the equations to be solved as
38
*           follows:
39
*
40
*              TRANS = 'N' or 'n'   A*x = b.
41
*
42
*              TRANS = 'T' or 't'   A'*x = b.
43
*
44
*              TRANS = 'C' or 'c'   A'*x = b.
45
*
46
*           Unchanged on exit.
47
*
48
*  DIAG   - CHARACTER*1.
49
*           On entry, DIAG specifies whether or not A is unit
50
*           triangular as follows:
51
*
52
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
53
*
54
*              DIAG = 'N' or 'n'   A is not assumed to be unit
55
*                                  triangular.
56
*
57
*           Unchanged on exit.
58
*
59
*  N      - INTEGER.
60
*           On entry, N specifies the order of the matrix A.
61
*           N must be at least zero.
62
*           Unchanged on exit.
63
*
64
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
65
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
66
*           upper triangular part of the array A must contain the upper
67
*           triangular matrix and the strictly lower triangular part of
68
*           A is not referenced.
69
*           Before entry with UPLO = 'L' or 'l', the leading n by n
70
*           lower triangular part of the array A must contain the lower
71
*           triangular matrix and the strictly upper triangular part of
72
*           A is not referenced.
73
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74
*           A are not referenced either, but are assumed to be unity.
75
*           Unchanged on exit.
76
*
77
*  LDA    - INTEGER.
78
*           On entry, LDA specifies the first dimension of A as declared
79
*           in the calling (sub) program. LDA must be at least
80
*           max( 1, n ).
81
*           Unchanged on exit.
82
*
83
*  X      - DOUBLE PRECISION array of dimension at least
84
*           ( 1 + ( n - 1 )*abs( INCX ) ).
85
*           Before entry, the incremented array X must contain the n
86
*           element right-hand side vector b. On exit, X is overwritten
87
*           with the solution vector x.
88
*
89
*  INCX   - INTEGER.
90
*           On entry, INCX specifies the increment for the elements of
91
*           X. INCX must not be zero.
92
*           Unchanged on exit.
93
*
94
*
95
*  Level 2 Blas routine.
96
*
97
*  -- Written on 22-October-1986.
98
*     Jack Dongarra, Argonne National Lab.
99
*     Jeremy Du Croz, Nag Central Office.
100
*     Sven Hammarling, Nag Central Office.
101
*     Richard Hanson, Sandia National Labs.
102
*
103
*
104
*     .. Parameters ..
105
      DOUBLE PRECISION ZERO
106
      PARAMETER (ZERO=0.0D+0)
107
*     ..
108
*     .. Local Scalars ..
109
      DOUBLE PRECISION TEMP
110
      INTEGER I,INFO,IX,J,JX,KX
111
      LOGICAL NOUNIT
112
*     ..
113
*     .. External Functions ..
114
      LOGICAL LSAME
115
      EXTERNAL LSAME
116
*     ..
117
*     .. External Subroutines ..
118
      EXTERNAL XERBLA
119
*     ..
120
*     .. Intrinsic Functions ..
121
      INTRINSIC MAX
122
*     ..
123
*
124
*     Test the input parameters.
125
*
126
      INFO = 0
127
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
128
          INFO = 1
129
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
130
     +         .NOT.LSAME(TRANS,'C')) THEN
131
          INFO = 2
132
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
133
          INFO = 3
134
      ELSE IF (N.LT.0) THEN
135
          INFO = 4
136
      ELSE IF (LDA.LT.MAX(1,N)) THEN
137
          INFO = 6
138
      ELSE IF (INCX.EQ.0) THEN
139
          INFO = 8
140
      END IF
141
      IF (INFO.NE.0) THEN
142
          CALL XERBLA('DTRSV ',INFO)
143
          RETURN
144
      END IF
145
*
146
*     Quick return if possible.
147
*
148
      IF (N.EQ.0) RETURN
149
*
150
      NOUNIT = LSAME(DIAG,'N')
151
*
152
*     Set up the start point in X if the increment is not unity. This
153
*     will be  ( N - 1 )*INCX  too small for descending loops.
154
*
155
      IF (INCX.LE.0) THEN
156
          KX = 1 - (N-1)*INCX
157
      ELSE IF (INCX.NE.1) THEN
158
          KX = 1
159
      END IF
160
*
161
*     Start the operations. In this version the elements of A are
162
*     accessed sequentially with one pass through A.
163
*
164
      IF (LSAME(TRANS,'N')) THEN
165
*
166
*        Form  x := inv( A )*x.
167
*
168
          IF (LSAME(UPLO,'U')) THEN
169
              IF (INCX.EQ.1) THEN
170
                  DO 20 J = N,1,-1
171
                      IF (X(J).NE.ZERO) THEN
172
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
173
                          TEMP = X(J)
174
                          DO 10 I = J - 1,1,-1
175
                              X(I) = X(I) - TEMP*A(I,J)
176
   10                     CONTINUE
177
                      END IF
178
   20             CONTINUE
179
              ELSE
180
                  JX = KX + (N-1)*INCX
181
                  DO 40 J = N,1,-1
182
                      IF (X(JX).NE.ZERO) THEN
183
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
184
                          TEMP = X(JX)
185
                          IX = JX
186
                          DO 30 I = J - 1,1,-1
187
                              IX = IX - INCX
188
                              X(IX) = X(IX) - TEMP*A(I,J)
189
   30                     CONTINUE
190
                      END IF
191
                      JX = JX - INCX
192
   40             CONTINUE
193
              END IF
194
          ELSE
195
              IF (INCX.EQ.1) THEN
196
                  DO 60 J = 1,N
197
                      IF (X(J).NE.ZERO) THEN
198
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
199
                          TEMP = X(J)
200
                          DO 50 I = J + 1,N
201
                              X(I) = X(I) - TEMP*A(I,J)
202
   50                     CONTINUE
203
                      END IF
204
   60             CONTINUE
205
              ELSE
206
                  JX = KX
207
                  DO 80 J = 1,N
208
                      IF (X(JX).NE.ZERO) THEN
209
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
210
                          TEMP = X(JX)
211
                          IX = JX
212
                          DO 70 I = J + 1,N
213
                              IX = IX + INCX
214
                              X(IX) = X(IX) - TEMP*A(I,J)
215
   70                     CONTINUE
216
                      END IF
217
                      JX = JX + INCX
218
   80             CONTINUE
219
              END IF
220
          END IF
221
      ELSE
222
*
223
*        Form  x := inv( A' )*x.
224
*
225
          IF (LSAME(UPLO,'U')) THEN
226
              IF (INCX.EQ.1) THEN
227
                  DO 100 J = 1,N
228
                      TEMP = X(J)
229
                      DO 90 I = 1,J - 1
230
                          TEMP = TEMP - A(I,J)*X(I)
231
   90                 CONTINUE
232
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
233
                      X(J) = TEMP
234
  100             CONTINUE
235
              ELSE
236
                  JX = KX
237
                  DO 120 J = 1,N
238
                      TEMP = X(JX)
239
                      IX = KX
240
                      DO 110 I = 1,J - 1
241
                          TEMP = TEMP - A(I,J)*X(IX)
242
                          IX = IX + INCX
243
  110                 CONTINUE
244
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
245
                      X(JX) = TEMP
246
                      JX = JX + INCX
247
  120             CONTINUE
248
              END IF
249
          ELSE
250
              IF (INCX.EQ.1) THEN
251
                  DO 140 J = N,1,-1
252
                      TEMP = X(J)
253
                      DO 130 I = N,J + 1,-1
254
                          TEMP = TEMP - A(I,J)*X(I)
255
  130                 CONTINUE
256
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
257
                      X(J) = TEMP
258
  140             CONTINUE
259
              ELSE
260
                  KX = KX + (N-1)*INCX
261
                  JX = KX
262
                  DO 160 J = N,1,-1
263
                      TEMP = X(JX)
264
                      IX = KX
265
                      DO 150 I = N,J + 1,-1
266
                          TEMP = TEMP - A(I,J)*X(IX)
267
                          IX = IX - INCX
268
  150                 CONTINUE
269
                      IF (NOUNIT) TEMP = TEMP/A(J,J)
270
                      X(JX) = TEMP
271
                      JX = JX - INCX
272
  160             CONTINUE
273
              END IF
274
          END IF
275
      END IF
276
*
277
      RETURN
278
*
279
*     End of DTRSV .
280
*
281
      END