Statistiques
| Révision :

root / src / blas / ctrsv.f @ 8

Historique | Voir | Annoter | Télécharger (10,01 ko)

1
      SUBROUTINE CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,LDA,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      COMPLEX A(LDA,*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  CTRSV  solves one of the systems of equations
14
*
15
*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
16
*
17
*  where b and x are n element vectors and A is an n by n unit, or
18
*  non-unit, upper or lower triangular matrix.
19
*
20
*  No test for singularity or near-singularity is included in this
21
*  routine. Such tests must be performed before calling this routine.
22
*
23
*  Arguments
24
*  ==========
25
*
26
*  UPLO   - CHARACTER*1.
27
*           On entry, UPLO specifies whether the matrix is an upper or
28
*           lower triangular matrix as follows:
29
*
30
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
31
*
32
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
33
*
34
*           Unchanged on exit.
35
*
36
*  TRANS  - CHARACTER*1.
37
*           On entry, TRANS specifies the equations to be solved as
38
*           follows:
39
*
40
*              TRANS = 'N' or 'n'   A*x = b.
41
*
42
*              TRANS = 'T' or 't'   A'*x = b.
43
*
44
*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
45
*
46
*           Unchanged on exit.
47
*
48
*  DIAG   - CHARACTER*1.
49
*           On entry, DIAG specifies whether or not A is unit
50
*           triangular as follows:
51
*
52
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
53
*
54
*              DIAG = 'N' or 'n'   A is not assumed to be unit
55
*                                  triangular.
56
*
57
*           Unchanged on exit.
58
*
59
*  N      - INTEGER.
60
*           On entry, N specifies the order of the matrix A.
61
*           N must be at least zero.
62
*           Unchanged on exit.
63
*
64
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
65
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
66
*           upper triangular part of the array A must contain the upper
67
*           triangular matrix and the strictly lower triangular part of
68
*           A is not referenced.
69
*           Before entry with UPLO = 'L' or 'l', the leading n by n
70
*           lower triangular part of the array A must contain the lower
71
*           triangular matrix and the strictly upper triangular part of
72
*           A is not referenced.
73
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74
*           A are not referenced either, but are assumed to be unity.
75
*           Unchanged on exit.
76
*
77
*  LDA    - INTEGER.
78
*           On entry, LDA specifies the first dimension of A as declared
79
*           in the calling (sub) program. LDA must be at least
80
*           max( 1, n ).
81
*           Unchanged on exit.
82
*
83
*  X      - COMPLEX          array of dimension at least
84
*           ( 1 + ( n - 1 )*abs( INCX ) ).
85
*           Before entry, the incremented array X must contain the n
86
*           element right-hand side vector b. On exit, X is overwritten
87
*           with the solution vector x.
88
*
89
*  INCX   - INTEGER.
90
*           On entry, INCX specifies the increment for the elements of
91
*           X. INCX must not be zero.
92
*           Unchanged on exit.
93
*
94
*
95
*  Level 2 Blas routine.
96
*
97
*  -- Written on 22-October-1986.
98
*     Jack Dongarra, Argonne National Lab.
99
*     Jeremy Du Croz, Nag Central Office.
100
*     Sven Hammarling, Nag Central Office.
101
*     Richard Hanson, Sandia National Labs.
102
*
103
*
104
*     .. Parameters ..
105
      COMPLEX ZERO
106
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
107
*     ..
108
*     .. Local Scalars ..
109
      COMPLEX TEMP
110
      INTEGER I,INFO,IX,J,JX,KX
111
      LOGICAL NOCONJ,NOUNIT
112
*     ..
113
*     .. External Functions ..
114
      LOGICAL LSAME
115
      EXTERNAL LSAME
116
*     ..
117
*     .. External Subroutines ..
118
      EXTERNAL XERBLA
119
*     ..
120
*     .. Intrinsic Functions ..
121
      INTRINSIC CONJG,MAX
122
*     ..
123
*
124
*     Test the input parameters.
125
*
126
      INFO = 0
127
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
128
          INFO = 1
129
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
130
     +         .NOT.LSAME(TRANS,'C')) THEN
131
          INFO = 2
132
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
133
          INFO = 3
134
      ELSE IF (N.LT.0) THEN
135
          INFO = 4
136
      ELSE IF (LDA.LT.MAX(1,N)) THEN
137
          INFO = 6
138
      ELSE IF (INCX.EQ.0) THEN
139
          INFO = 8
140
      END IF
141
      IF (INFO.NE.0) THEN
142
          CALL XERBLA('CTRSV ',INFO)
143
          RETURN
144
      END IF
145
*
146
*     Quick return if possible.
147
*
148
      IF (N.EQ.0) RETURN
149
*
150
      NOCONJ = LSAME(TRANS,'T')
151
      NOUNIT = LSAME(DIAG,'N')
152
*
153
*     Set up the start point in X if the increment is not unity. This
154
*     will be  ( N - 1 )*INCX  too small for descending loops.
155
*
156
      IF (INCX.LE.0) THEN
157
          KX = 1 - (N-1)*INCX
158
      ELSE IF (INCX.NE.1) THEN
159
          KX = 1
160
      END IF
161
*
162
*     Start the operations. In this version the elements of A are
163
*     accessed sequentially with one pass through A.
164
*
165
      IF (LSAME(TRANS,'N')) THEN
166
*
167
*        Form  x := inv( A )*x.
168
*
169
          IF (LSAME(UPLO,'U')) THEN
170
              IF (INCX.EQ.1) THEN
171
                  DO 20 J = N,1,-1
172
                      IF (X(J).NE.ZERO) THEN
173
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
174
                          TEMP = X(J)
175
                          DO 10 I = J - 1,1,-1
176
                              X(I) = X(I) - TEMP*A(I,J)
177
   10                     CONTINUE
178
                      END IF
179
   20             CONTINUE
180
              ELSE
181
                  JX = KX + (N-1)*INCX
182
                  DO 40 J = N,1,-1
183
                      IF (X(JX).NE.ZERO) THEN
184
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
185
                          TEMP = X(JX)
186
                          IX = JX
187
                          DO 30 I = J - 1,1,-1
188
                              IX = IX - INCX
189
                              X(IX) = X(IX) - TEMP*A(I,J)
190
   30                     CONTINUE
191
                      END IF
192
                      JX = JX - INCX
193
   40             CONTINUE
194
              END IF
195
          ELSE
196
              IF (INCX.EQ.1) THEN
197
                  DO 60 J = 1,N
198
                      IF (X(J).NE.ZERO) THEN
199
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
200
                          TEMP = X(J)
201
                          DO 50 I = J + 1,N
202
                              X(I) = X(I) - TEMP*A(I,J)
203
   50                     CONTINUE
204
                      END IF
205
   60             CONTINUE
206
              ELSE
207
                  JX = KX
208
                  DO 80 J = 1,N
209
                      IF (X(JX).NE.ZERO) THEN
210
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
211
                          TEMP = X(JX)
212
                          IX = JX
213
                          DO 70 I = J + 1,N
214
                              IX = IX + INCX
215
                              X(IX) = X(IX) - TEMP*A(I,J)
216
   70                     CONTINUE
217
                      END IF
218
                      JX = JX + INCX
219
   80             CONTINUE
220
              END IF
221
          END IF
222
      ELSE
223
*
224
*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
225
*
226
          IF (LSAME(UPLO,'U')) THEN
227
              IF (INCX.EQ.1) THEN
228
                  DO 110 J = 1,N
229
                      TEMP = X(J)
230
                      IF (NOCONJ) THEN
231
                          DO 90 I = 1,J - 1
232
                              TEMP = TEMP - A(I,J)*X(I)
233
   90                     CONTINUE
234
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
235
                      ELSE
236
                          DO 100 I = 1,J - 1
237
                              TEMP = TEMP - CONJG(A(I,J))*X(I)
238
  100                     CONTINUE
239
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
240
                      END IF
241
                      X(J) = TEMP
242
  110             CONTINUE
243
              ELSE
244
                  JX = KX
245
                  DO 140 J = 1,N
246
                      IX = KX
247
                      TEMP = X(JX)
248
                      IF (NOCONJ) THEN
249
                          DO 120 I = 1,J - 1
250
                              TEMP = TEMP - A(I,J)*X(IX)
251
                              IX = IX + INCX
252
  120                     CONTINUE
253
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
254
                      ELSE
255
                          DO 130 I = 1,J - 1
256
                              TEMP = TEMP - CONJG(A(I,J))*X(IX)
257
                              IX = IX + INCX
258
  130                     CONTINUE
259
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
260
                      END IF
261
                      X(JX) = TEMP
262
                      JX = JX + INCX
263
  140             CONTINUE
264
              END IF
265
          ELSE
266
              IF (INCX.EQ.1) THEN
267
                  DO 170 J = N,1,-1
268
                      TEMP = X(J)
269
                      IF (NOCONJ) THEN
270
                          DO 150 I = N,J + 1,-1
271
                              TEMP = TEMP - A(I,J)*X(I)
272
  150                     CONTINUE
273
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
274
                      ELSE
275
                          DO 160 I = N,J + 1,-1
276
                              TEMP = TEMP - CONJG(A(I,J))*X(I)
277
  160                     CONTINUE
278
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
279
                      END IF
280
                      X(J) = TEMP
281
  170             CONTINUE
282
              ELSE
283
                  KX = KX + (N-1)*INCX
284
                  JX = KX
285
                  DO 200 J = N,1,-1
286
                      IX = KX
287
                      TEMP = X(JX)
288
                      IF (NOCONJ) THEN
289
                          DO 180 I = N,J + 1,-1
290
                              TEMP = TEMP - A(I,J)*X(IX)
291
                              IX = IX - INCX
292
  180                     CONTINUE
293
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
294
                      ELSE
295
                          DO 190 I = N,J + 1,-1
296
                              TEMP = TEMP - CONJG(A(I,J))*X(IX)
297
                              IX = IX - INCX
298
  190                     CONTINUE
299
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J))
300
                      END IF
301
                      X(JX) = TEMP
302
                      JX = JX - INCX
303
  200             CONTINUE
304
              END IF
305
          END IF
306
      END IF
307
*
308
      RETURN
309
*
310
*     End of CTRSV .
311
*
312
      END