Statistiques
| Révision :

root / src / blas / chemv.f @ 8

Historique | Voir | Annoter | Télécharger (7,83 ko)

1
      SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2
*     .. Scalar Arguments ..
3
      COMPLEX ALPHA,BETA
4
      INTEGER INCX,INCY,LDA,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      COMPLEX A(LDA,*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  CHEMV  performs the matrix-vector  operation
15
*
16
*     y := alpha*A*x + beta*y,
17
*
18
*  where alpha and beta are scalars, x and y are n element vectors and
19
*  A is an n by n hermitian matrix.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the array A is to be referenced as
27
*           follows:
28
*
29
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30
*                                  is to be referenced.
31
*
32
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33
*                                  is to be referenced.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - COMPLEX         .
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
47
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
48
*           upper triangular part of the array A must contain the upper
49
*           triangular part of the hermitian matrix and the strictly
50
*           lower triangular part of A is not referenced.
51
*           Before entry with UPLO = 'L' or 'l', the leading n by n
52
*           lower triangular part of the array A must contain the lower
53
*           triangular part of the hermitian matrix and the strictly
54
*           upper triangular part of A is not referenced.
55
*           Note that the imaginary parts of the diagonal elements need
56
*           not be set and are assumed to be zero.
57
*           Unchanged on exit.
58
*
59
*  LDA    - INTEGER.
60
*           On entry, LDA specifies the first dimension of A as declared
61
*           in the calling (sub) program. LDA must be at least
62
*           max( 1, n ).
63
*           Unchanged on exit.
64
*
65
*  X      - COMPLEX          array of dimension at least
66
*           ( 1 + ( n - 1 )*abs( INCX ) ).
67
*           Before entry, the incremented array X must contain the n
68
*           element vector x.
69
*           Unchanged on exit.
70
*
71
*  INCX   - INTEGER.
72
*           On entry, INCX specifies the increment for the elements of
73
*           X. INCX must not be zero.
74
*           Unchanged on exit.
75
*
76
*  BETA   - COMPLEX         .
77
*           On entry, BETA specifies the scalar beta. When BETA is
78
*           supplied as zero then Y need not be set on input.
79
*           Unchanged on exit.
80
*
81
*  Y      - COMPLEX          array of dimension at least
82
*           ( 1 + ( n - 1 )*abs( INCY ) ).
83
*           Before entry, the incremented array Y must contain the n
84
*           element vector y. On exit, Y is overwritten by the updated
85
*           vector y.
86
*
87
*  INCY   - INTEGER.
88
*           On entry, INCY specifies the increment for the elements of
89
*           Y. INCY must not be zero.
90
*           Unchanged on exit.
91
*
92
*
93
*  Level 2 Blas routine.
94
*
95
*  -- Written on 22-October-1986.
96
*     Jack Dongarra, Argonne National Lab.
97
*     Jeremy Du Croz, Nag Central Office.
98
*     Sven Hammarling, Nag Central Office.
99
*     Richard Hanson, Sandia National Labs.
100
*
101
*
102
*     .. Parameters ..
103
      COMPLEX ONE
104
      PARAMETER (ONE= (1.0E+0,0.0E+0))
105
      COMPLEX ZERO
106
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
107
*     ..
108
*     .. Local Scalars ..
109
      COMPLEX TEMP1,TEMP2
110
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
111
*     ..
112
*     .. External Functions ..
113
      LOGICAL LSAME
114
      EXTERNAL LSAME
115
*     ..
116
*     .. External Subroutines ..
117
      EXTERNAL XERBLA
118
*     ..
119
*     .. Intrinsic Functions ..
120
      INTRINSIC CONJG,MAX,REAL
121
*     ..
122
*
123
*     Test the input parameters.
124
*
125
      INFO = 0
126
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
127
          INFO = 1
128
      ELSE IF (N.LT.0) THEN
129
          INFO = 2
130
      ELSE IF (LDA.LT.MAX(1,N)) THEN
131
          INFO = 5
132
      ELSE IF (INCX.EQ.0) THEN
133
          INFO = 7
134
      ELSE IF (INCY.EQ.0) THEN
135
          INFO = 10
136
      END IF
137
      IF (INFO.NE.0) THEN
138
          CALL XERBLA('CHEMV ',INFO)
139
          RETURN
140
      END IF
141
*
142
*     Quick return if possible.
143
*
144
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
145
*
146
*     Set up the start points in  X  and  Y.
147
*
148
      IF (INCX.GT.0) THEN
149
          KX = 1
150
      ELSE
151
          KX = 1 - (N-1)*INCX
152
      END IF
153
      IF (INCY.GT.0) THEN
154
          KY = 1
155
      ELSE
156
          KY = 1 - (N-1)*INCY
157
      END IF
158
*
159
*     Start the operations. In this version the elements of A are
160
*     accessed sequentially with one pass through the triangular part
161
*     of A.
162
*
163
*     First form  y := beta*y.
164
*
165
      IF (BETA.NE.ONE) THEN
166
          IF (INCY.EQ.1) THEN
167
              IF (BETA.EQ.ZERO) THEN
168
                  DO 10 I = 1,N
169
                      Y(I) = ZERO
170
   10             CONTINUE
171
              ELSE
172
                  DO 20 I = 1,N
173
                      Y(I) = BETA*Y(I)
174
   20             CONTINUE
175
              END IF
176
          ELSE
177
              IY = KY
178
              IF (BETA.EQ.ZERO) THEN
179
                  DO 30 I = 1,N
180
                      Y(IY) = ZERO
181
                      IY = IY + INCY
182
   30             CONTINUE
183
              ELSE
184
                  DO 40 I = 1,N
185
                      Y(IY) = BETA*Y(IY)
186
                      IY = IY + INCY
187
   40             CONTINUE
188
              END IF
189
          END IF
190
      END IF
191
      IF (ALPHA.EQ.ZERO) RETURN
192
      IF (LSAME(UPLO,'U')) THEN
193
*
194
*        Form  y  when A is stored in upper triangle.
195
*
196
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
197
              DO 60 J = 1,N
198
                  TEMP1 = ALPHA*X(J)
199
                  TEMP2 = ZERO
200
                  DO 50 I = 1,J - 1
201
                      Y(I) = Y(I) + TEMP1*A(I,J)
202
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
203
   50             CONTINUE
204
                  Y(J) = Y(J) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
205
   60         CONTINUE
206
          ELSE
207
              JX = KX
208
              JY = KY
209
              DO 80 J = 1,N
210
                  TEMP1 = ALPHA*X(JX)
211
                  TEMP2 = ZERO
212
                  IX = KX
213
                  IY = KY
214
                  DO 70 I = 1,J - 1
215
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
216
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
217
                      IX = IX + INCX
218
                      IY = IY + INCY
219
   70             CONTINUE
220
                  Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
221
                  JX = JX + INCX
222
                  JY = JY + INCY
223
   80         CONTINUE
224
          END IF
225
      ELSE
226
*
227
*        Form  y  when A is stored in lower triangle.
228
*
229
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
230
              DO 100 J = 1,N
231
                  TEMP1 = ALPHA*X(J)
232
                  TEMP2 = ZERO
233
                  Y(J) = Y(J) + TEMP1*REAL(A(J,J))
234
                  DO 90 I = J + 1,N
235
                      Y(I) = Y(I) + TEMP1*A(I,J)
236
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
237
   90             CONTINUE
238
                  Y(J) = Y(J) + ALPHA*TEMP2
239
  100         CONTINUE
240
          ELSE
241
              JX = KX
242
              JY = KY
243
              DO 120 J = 1,N
244
                  TEMP1 = ALPHA*X(JX)
245
                  TEMP2 = ZERO
246
                  Y(JY) = Y(JY) + TEMP1*REAL(A(J,J))
247
                  IX = JX
248
                  IY = JY
249
                  DO 110 I = J + 1,N
250
                      IX = IX + INCX
251
                      IY = IY + INCY
252
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
253
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
254
  110             CONTINUE
255
                  Y(JY) = Y(JY) + ALPHA*TEMP2
256
                  JX = JX + INCX
257
                  JY = JY + INCY
258
  120         CONTINUE
259
          END IF
260
      END IF
261
*
262
      RETURN
263
*
264
*     End of CHEMV .
265
*
266
      END