root / src / blas / cgemm.f @ 8
Historique | Voir | Annoter | Télécharger (12,75 ko)
1 |
SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
COMPLEX ALPHA,BETA |
4 |
INTEGER K,LDA,LDB,LDC,M,N |
5 |
CHARACTER TRANSA,TRANSB |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* CGEMM performs one of the matrix-matrix operations |
15 |
* |
16 |
* C := alpha*op( A )*op( B ) + beta*C, |
17 |
* |
18 |
* where op( X ) is one of |
19 |
* |
20 |
* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), |
21 |
* |
22 |
* alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
23 |
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
24 |
* |
25 |
* Arguments |
26 |
* ========== |
27 |
* |
28 |
* TRANSA - CHARACTER*1. |
29 |
* On entry, TRANSA specifies the form of op( A ) to be used in |
30 |
* the matrix multiplication as follows: |
31 |
* |
32 |
* TRANSA = 'N' or 'n', op( A ) = A. |
33 |
* |
34 |
* TRANSA = 'T' or 't', op( A ) = A'. |
35 |
* |
36 |
* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). |
37 |
* |
38 |
* Unchanged on exit. |
39 |
* |
40 |
* TRANSB - CHARACTER*1. |
41 |
* On entry, TRANSB specifies the form of op( B ) to be used in |
42 |
* the matrix multiplication as follows: |
43 |
* |
44 |
* TRANSB = 'N' or 'n', op( B ) = B. |
45 |
* |
46 |
* TRANSB = 'T' or 't', op( B ) = B'. |
47 |
* |
48 |
* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). |
49 |
* |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* M - INTEGER. |
53 |
* On entry, M specifies the number of rows of the matrix |
54 |
* op( A ) and of the matrix C. M must be at least zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* N - INTEGER. |
58 |
* On entry, N specifies the number of columns of the matrix |
59 |
* op( B ) and the number of columns of the matrix C. N must be |
60 |
* at least zero. |
61 |
* Unchanged on exit. |
62 |
* |
63 |
* K - INTEGER. |
64 |
* On entry, K specifies the number of columns of the matrix |
65 |
* op( A ) and the number of rows of the matrix op( B ). K must |
66 |
* be at least zero. |
67 |
* Unchanged on exit. |
68 |
* |
69 |
* ALPHA - COMPLEX . |
70 |
* On entry, ALPHA specifies the scalar alpha. |
71 |
* Unchanged on exit. |
72 |
* |
73 |
* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is |
74 |
* k when TRANSA = 'N' or 'n', and is m otherwise. |
75 |
* Before entry with TRANSA = 'N' or 'n', the leading m by k |
76 |
* part of the array A must contain the matrix A, otherwise |
77 |
* the leading k by m part of the array A must contain the |
78 |
* matrix A. |
79 |
* Unchanged on exit. |
80 |
* |
81 |
* LDA - INTEGER. |
82 |
* On entry, LDA specifies the first dimension of A as declared |
83 |
* in the calling (sub) program. When TRANSA = 'N' or 'n' then |
84 |
* LDA must be at least max( 1, m ), otherwise LDA must be at |
85 |
* least max( 1, k ). |
86 |
* Unchanged on exit. |
87 |
* |
88 |
* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is |
89 |
* n when TRANSB = 'N' or 'n', and is k otherwise. |
90 |
* Before entry with TRANSB = 'N' or 'n', the leading k by n |
91 |
* part of the array B must contain the matrix B, otherwise |
92 |
* the leading n by k part of the array B must contain the |
93 |
* matrix B. |
94 |
* Unchanged on exit. |
95 |
* |
96 |
* LDB - INTEGER. |
97 |
* On entry, LDB specifies the first dimension of B as declared |
98 |
* in the calling (sub) program. When TRANSB = 'N' or 'n' then |
99 |
* LDB must be at least max( 1, k ), otherwise LDB must be at |
100 |
* least max( 1, n ). |
101 |
* Unchanged on exit. |
102 |
* |
103 |
* BETA - COMPLEX . |
104 |
* On entry, BETA specifies the scalar beta. When BETA is |
105 |
* supplied as zero then C need not be set on input. |
106 |
* Unchanged on exit. |
107 |
* |
108 |
* C - COMPLEX array of DIMENSION ( LDC, n ). |
109 |
* Before entry, the leading m by n part of the array C must |
110 |
* contain the matrix C, except when beta is zero, in which |
111 |
* case C need not be set on entry. |
112 |
* On exit, the array C is overwritten by the m by n matrix |
113 |
* ( alpha*op( A )*op( B ) + beta*C ). |
114 |
* |
115 |
* LDC - INTEGER. |
116 |
* On entry, LDC specifies the first dimension of C as declared |
117 |
* in the calling (sub) program. LDC must be at least |
118 |
* max( 1, m ). |
119 |
* Unchanged on exit. |
120 |
* |
121 |
* |
122 |
* Level 3 Blas routine. |
123 |
* |
124 |
* -- Written on 8-February-1989. |
125 |
* Jack Dongarra, Argonne National Laboratory. |
126 |
* Iain Duff, AERE Harwell. |
127 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd. |
128 |
* Sven Hammarling, Numerical Algorithms Group Ltd. |
129 |
* |
130 |
* |
131 |
* .. External Functions .. |
132 |
LOGICAL LSAME |
133 |
EXTERNAL LSAME |
134 |
* .. |
135 |
* .. External Subroutines .. |
136 |
EXTERNAL XERBLA |
137 |
* .. |
138 |
* .. Intrinsic Functions .. |
139 |
INTRINSIC CONJG,MAX |
140 |
* .. |
141 |
* .. Local Scalars .. |
142 |
COMPLEX TEMP |
143 |
INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB |
144 |
LOGICAL CONJA,CONJB,NOTA,NOTB |
145 |
* .. |
146 |
* .. Parameters .. |
147 |
COMPLEX ONE |
148 |
PARAMETER (ONE= (1.0E+0,0.0E+0)) |
149 |
COMPLEX ZERO |
150 |
PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
151 |
* .. |
152 |
* |
153 |
* Set NOTA and NOTB as true if A and B respectively are not |
154 |
* conjugated or transposed, set CONJA and CONJB as true if A and |
155 |
* B respectively are to be transposed but not conjugated and set |
156 |
* NROWA, NCOLA and NROWB as the number of rows and columns of A |
157 |
* and the number of rows of B respectively. |
158 |
* |
159 |
NOTA = LSAME(TRANSA,'N') |
160 |
NOTB = LSAME(TRANSB,'N') |
161 |
CONJA = LSAME(TRANSA,'C') |
162 |
CONJB = LSAME(TRANSB,'C') |
163 |
IF (NOTA) THEN |
164 |
NROWA = M |
165 |
NCOLA = K |
166 |
ELSE |
167 |
NROWA = K |
168 |
NCOLA = M |
169 |
END IF |
170 |
IF (NOTB) THEN |
171 |
NROWB = K |
172 |
ELSE |
173 |
NROWB = N |
174 |
END IF |
175 |
* |
176 |
* Test the input parameters. |
177 |
* |
178 |
INFO = 0 |
179 |
IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. |
180 |
+ (.NOT.LSAME(TRANSA,'T'))) THEN |
181 |
INFO = 1 |
182 |
ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. |
183 |
+ (.NOT.LSAME(TRANSB,'T'))) THEN |
184 |
INFO = 2 |
185 |
ELSE IF (M.LT.0) THEN |
186 |
INFO = 3 |
187 |
ELSE IF (N.LT.0) THEN |
188 |
INFO = 4 |
189 |
ELSE IF (K.LT.0) THEN |
190 |
INFO = 5 |
191 |
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
192 |
INFO = 8 |
193 |
ELSE IF (LDB.LT.MAX(1,NROWB)) THEN |
194 |
INFO = 10 |
195 |
ELSE IF (LDC.LT.MAX(1,M)) THEN |
196 |
INFO = 13 |
197 |
END IF |
198 |
IF (INFO.NE.0) THEN |
199 |
CALL XERBLA('CGEMM ',INFO) |
200 |
RETURN |
201 |
END IF |
202 |
* |
203 |
* Quick return if possible. |
204 |
* |
205 |
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
206 |
+ (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
207 |
* |
208 |
* And when alpha.eq.zero. |
209 |
* |
210 |
IF (ALPHA.EQ.ZERO) THEN |
211 |
IF (BETA.EQ.ZERO) THEN |
212 |
DO 20 J = 1,N |
213 |
DO 10 I = 1,M |
214 |
C(I,J) = ZERO |
215 |
10 CONTINUE |
216 |
20 CONTINUE |
217 |
ELSE |
218 |
DO 40 J = 1,N |
219 |
DO 30 I = 1,M |
220 |
C(I,J) = BETA*C(I,J) |
221 |
30 CONTINUE |
222 |
40 CONTINUE |
223 |
END IF |
224 |
RETURN |
225 |
END IF |
226 |
* |
227 |
* Start the operations. |
228 |
* |
229 |
IF (NOTB) THEN |
230 |
IF (NOTA) THEN |
231 |
* |
232 |
* Form C := alpha*A*B + beta*C. |
233 |
* |
234 |
DO 90 J = 1,N |
235 |
IF (BETA.EQ.ZERO) THEN |
236 |
DO 50 I = 1,M |
237 |
C(I,J) = ZERO |
238 |
50 CONTINUE |
239 |
ELSE IF (BETA.NE.ONE) THEN |
240 |
DO 60 I = 1,M |
241 |
C(I,J) = BETA*C(I,J) |
242 |
60 CONTINUE |
243 |
END IF |
244 |
DO 80 L = 1,K |
245 |
IF (B(L,J).NE.ZERO) THEN |
246 |
TEMP = ALPHA*B(L,J) |
247 |
DO 70 I = 1,M |
248 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
249 |
70 CONTINUE |
250 |
END IF |
251 |
80 CONTINUE |
252 |
90 CONTINUE |
253 |
ELSE IF (CONJA) THEN |
254 |
* |
255 |
* Form C := alpha*conjg( A' )*B + beta*C. |
256 |
* |
257 |
DO 120 J = 1,N |
258 |
DO 110 I = 1,M |
259 |
TEMP = ZERO |
260 |
DO 100 L = 1,K |
261 |
TEMP = TEMP + CONJG(A(L,I))*B(L,J) |
262 |
100 CONTINUE |
263 |
IF (BETA.EQ.ZERO) THEN |
264 |
C(I,J) = ALPHA*TEMP |
265 |
ELSE |
266 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
267 |
END IF |
268 |
110 CONTINUE |
269 |
120 CONTINUE |
270 |
ELSE |
271 |
* |
272 |
* Form C := alpha*A'*B + beta*C |
273 |
* |
274 |
DO 150 J = 1,N |
275 |
DO 140 I = 1,M |
276 |
TEMP = ZERO |
277 |
DO 130 L = 1,K |
278 |
TEMP = TEMP + A(L,I)*B(L,J) |
279 |
130 CONTINUE |
280 |
IF (BETA.EQ.ZERO) THEN |
281 |
C(I,J) = ALPHA*TEMP |
282 |
ELSE |
283 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
284 |
END IF |
285 |
140 CONTINUE |
286 |
150 CONTINUE |
287 |
END IF |
288 |
ELSE IF (NOTA) THEN |
289 |
IF (CONJB) THEN |
290 |
* |
291 |
* Form C := alpha*A*conjg( B' ) + beta*C. |
292 |
* |
293 |
DO 200 J = 1,N |
294 |
IF (BETA.EQ.ZERO) THEN |
295 |
DO 160 I = 1,M |
296 |
C(I,J) = ZERO |
297 |
160 CONTINUE |
298 |
ELSE IF (BETA.NE.ONE) THEN |
299 |
DO 170 I = 1,M |
300 |
C(I,J) = BETA*C(I,J) |
301 |
170 CONTINUE |
302 |
END IF |
303 |
DO 190 L = 1,K |
304 |
IF (B(J,L).NE.ZERO) THEN |
305 |
TEMP = ALPHA*CONJG(B(J,L)) |
306 |
DO 180 I = 1,M |
307 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
308 |
180 CONTINUE |
309 |
END IF |
310 |
190 CONTINUE |
311 |
200 CONTINUE |
312 |
ELSE |
313 |
* |
314 |
* Form C := alpha*A*B' + beta*C |
315 |
* |
316 |
DO 250 J = 1,N |
317 |
IF (BETA.EQ.ZERO) THEN |
318 |
DO 210 I = 1,M |
319 |
C(I,J) = ZERO |
320 |
210 CONTINUE |
321 |
ELSE IF (BETA.NE.ONE) THEN |
322 |
DO 220 I = 1,M |
323 |
C(I,J) = BETA*C(I,J) |
324 |
220 CONTINUE |
325 |
END IF |
326 |
DO 240 L = 1,K |
327 |
IF (B(J,L).NE.ZERO) THEN |
328 |
TEMP = ALPHA*B(J,L) |
329 |
DO 230 I = 1,M |
330 |
C(I,J) = C(I,J) + TEMP*A(I,L) |
331 |
230 CONTINUE |
332 |
END IF |
333 |
240 CONTINUE |
334 |
250 CONTINUE |
335 |
END IF |
336 |
ELSE IF (CONJA) THEN |
337 |
IF (CONJB) THEN |
338 |
* |
339 |
* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. |
340 |
* |
341 |
DO 280 J = 1,N |
342 |
DO 270 I = 1,M |
343 |
TEMP = ZERO |
344 |
DO 260 L = 1,K |
345 |
TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L)) |
346 |
260 CONTINUE |
347 |
IF (BETA.EQ.ZERO) THEN |
348 |
C(I,J) = ALPHA*TEMP |
349 |
ELSE |
350 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
351 |
END IF |
352 |
270 CONTINUE |
353 |
280 CONTINUE |
354 |
ELSE |
355 |
* |
356 |
* Form C := alpha*conjg( A' )*B' + beta*C |
357 |
* |
358 |
DO 310 J = 1,N |
359 |
DO 300 I = 1,M |
360 |
TEMP = ZERO |
361 |
DO 290 L = 1,K |
362 |
TEMP = TEMP + CONJG(A(L,I))*B(J,L) |
363 |
290 CONTINUE |
364 |
IF (BETA.EQ.ZERO) THEN |
365 |
C(I,J) = ALPHA*TEMP |
366 |
ELSE |
367 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
368 |
END IF |
369 |
300 CONTINUE |
370 |
310 CONTINUE |
371 |
END IF |
372 |
ELSE |
373 |
IF (CONJB) THEN |
374 |
* |
375 |
* Form C := alpha*A'*conjg( B' ) + beta*C |
376 |
* |
377 |
DO 340 J = 1,N |
378 |
DO 330 I = 1,M |
379 |
TEMP = ZERO |
380 |
DO 320 L = 1,K |
381 |
TEMP = TEMP + A(L,I)*CONJG(B(J,L)) |
382 |
320 CONTINUE |
383 |
IF (BETA.EQ.ZERO) THEN |
384 |
C(I,J) = ALPHA*TEMP |
385 |
ELSE |
386 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
387 |
END IF |
388 |
330 CONTINUE |
389 |
340 CONTINUE |
390 |
ELSE |
391 |
* |
392 |
* Form C := alpha*A'*B' + beta*C |
393 |
* |
394 |
DO 370 J = 1,N |
395 |
DO 360 I = 1,M |
396 |
TEMP = ZERO |
397 |
DO 350 L = 1,K |
398 |
TEMP = TEMP + A(L,I)*B(J,L) |
399 |
350 CONTINUE |
400 |
IF (BETA.EQ.ZERO) THEN |
401 |
C(I,J) = ALPHA*TEMP |
402 |
ELSE |
403 |
C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
404 |
END IF |
405 |
360 CONTINUE |
406 |
370 CONTINUE |
407 |
END IF |
408 |
END IF |
409 |
* |
410 |
RETURN |
411 |
* |
412 |
* End of CGEMM . |
413 |
* |
414 |
END |