root / src / blas / ztpmv.f @ 8
Historique | Voir | Annoter | Télécharger (10,58 ko)
1 | 1 | equemene | SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | INTEGER INCX,N |
4 | 1 | equemene | CHARACTER DIAG,TRANS,UPLO |
5 | 1 | equemene | * .. |
6 | 1 | equemene | * .. Array Arguments .. |
7 | 1 | equemene | DOUBLE COMPLEX AP(*),X(*) |
8 | 1 | equemene | * .. |
9 | 1 | equemene | * |
10 | 1 | equemene | * Purpose |
11 | 1 | equemene | * ======= |
12 | 1 | equemene | * |
13 | 1 | equemene | * ZTPMV performs one of the matrix-vector operations |
14 | 1 | equemene | * |
15 | 1 | equemene | * x := A*x, or x := A'*x, or x := conjg( A' )*x, |
16 | 1 | equemene | * |
17 | 1 | equemene | * where x is an n element vector and A is an n by n unit, or non-unit, |
18 | 1 | equemene | * upper or lower triangular matrix, supplied in packed form. |
19 | 1 | equemene | * |
20 | 1 | equemene | * Arguments |
21 | 1 | equemene | * ========== |
22 | 1 | equemene | * |
23 | 1 | equemene | * UPLO - CHARACTER*1. |
24 | 1 | equemene | * On entry, UPLO specifies whether the matrix is an upper or |
25 | 1 | equemene | * lower triangular matrix as follows: |
26 | 1 | equemene | * |
27 | 1 | equemene | * UPLO = 'U' or 'u' A is an upper triangular matrix. |
28 | 1 | equemene | * |
29 | 1 | equemene | * UPLO = 'L' or 'l' A is a lower triangular matrix. |
30 | 1 | equemene | * |
31 | 1 | equemene | * Unchanged on exit. |
32 | 1 | equemene | * |
33 | 1 | equemene | * TRANS - CHARACTER*1. |
34 | 1 | equemene | * On entry, TRANS specifies the operation to be performed as |
35 | 1 | equemene | * follows: |
36 | 1 | equemene | * |
37 | 1 | equemene | * TRANS = 'N' or 'n' x := A*x. |
38 | 1 | equemene | * |
39 | 1 | equemene | * TRANS = 'T' or 't' x := A'*x. |
40 | 1 | equemene | * |
41 | 1 | equemene | * TRANS = 'C' or 'c' x := conjg( A' )*x. |
42 | 1 | equemene | * |
43 | 1 | equemene | * Unchanged on exit. |
44 | 1 | equemene | * |
45 | 1 | equemene | * DIAG - CHARACTER*1. |
46 | 1 | equemene | * On entry, DIAG specifies whether or not A is unit |
47 | 1 | equemene | * triangular as follows: |
48 | 1 | equemene | * |
49 | 1 | equemene | * DIAG = 'U' or 'u' A is assumed to be unit triangular. |
50 | 1 | equemene | * |
51 | 1 | equemene | * DIAG = 'N' or 'n' A is not assumed to be unit |
52 | 1 | equemene | * triangular. |
53 | 1 | equemene | * |
54 | 1 | equemene | * Unchanged on exit. |
55 | 1 | equemene | * |
56 | 1 | equemene | * N - INTEGER. |
57 | 1 | equemene | * On entry, N specifies the order of the matrix A. |
58 | 1 | equemene | * N must be at least zero. |
59 | 1 | equemene | * Unchanged on exit. |
60 | 1 | equemene | * |
61 | 1 | equemene | * AP - COMPLEX*16 array of DIMENSION at least |
62 | 1 | equemene | * ( ( n*( n + 1 ) )/2 ). |
63 | 1 | equemene | * Before entry with UPLO = 'U' or 'u', the array AP must |
64 | 1 | equemene | * contain the upper triangular matrix packed sequentially, |
65 | 1 | equemene | * column by column, so that AP( 1 ) contains a( 1, 1 ), |
66 | 1 | equemene | * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) |
67 | 1 | equemene | * respectively, and so on. |
68 | 1 | equemene | * Before entry with UPLO = 'L' or 'l', the array AP must |
69 | 1 | equemene | * contain the lower triangular matrix packed sequentially, |
70 | 1 | equemene | * column by column, so that AP( 1 ) contains a( 1, 1 ), |
71 | 1 | equemene | * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) |
72 | 1 | equemene | * respectively, and so on. |
73 | 1 | equemene | * Note that when DIAG = 'U' or 'u', the diagonal elements of |
74 | 1 | equemene | * A are not referenced, but are assumed to be unity. |
75 | 1 | equemene | * Unchanged on exit. |
76 | 1 | equemene | * |
77 | 1 | equemene | * X - COMPLEX*16 array of dimension at least |
78 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCX ) ). |
79 | 1 | equemene | * Before entry, the incremented array X must contain the n |
80 | 1 | equemene | * element vector x. On exit, X is overwritten with the |
81 | 1 | equemene | * tranformed vector x. |
82 | 1 | equemene | * |
83 | 1 | equemene | * INCX - INTEGER. |
84 | 1 | equemene | * On entry, INCX specifies the increment for the elements of |
85 | 1 | equemene | * X. INCX must not be zero. |
86 | 1 | equemene | * Unchanged on exit. |
87 | 1 | equemene | * |
88 | 1 | equemene | * |
89 | 1 | equemene | * Level 2 Blas routine. |
90 | 1 | equemene | * |
91 | 1 | equemene | * -- Written on 22-October-1986. |
92 | 1 | equemene | * Jack Dongarra, Argonne National Lab. |
93 | 1 | equemene | * Jeremy Du Croz, Nag Central Office. |
94 | 1 | equemene | * Sven Hammarling, Nag Central Office. |
95 | 1 | equemene | * Richard Hanson, Sandia National Labs. |
96 | 1 | equemene | * |
97 | 1 | equemene | * |
98 | 1 | equemene | * .. Parameters .. |
99 | 1 | equemene | DOUBLE COMPLEX ZERO |
100 | 1 | equemene | PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
101 | 1 | equemene | * .. |
102 | 1 | equemene | * .. Local Scalars .. |
103 | 1 | equemene | DOUBLE COMPLEX TEMP |
104 | 1 | equemene | INTEGER I,INFO,IX,J,JX,K,KK,KX |
105 | 1 | equemene | LOGICAL NOCONJ,NOUNIT |
106 | 1 | equemene | * .. |
107 | 1 | equemene | * .. External Functions .. |
108 | 1 | equemene | LOGICAL LSAME |
109 | 1 | equemene | EXTERNAL LSAME |
110 | 1 | equemene | * .. |
111 | 1 | equemene | * .. External Subroutines .. |
112 | 1 | equemene | EXTERNAL XERBLA |
113 | 1 | equemene | * .. |
114 | 1 | equemene | * .. Intrinsic Functions .. |
115 | 1 | equemene | INTRINSIC DCONJG |
116 | 1 | equemene | * .. |
117 | 1 | equemene | * |
118 | 1 | equemene | * Test the input parameters. |
119 | 1 | equemene | * |
120 | 1 | equemene | INFO = 0 |
121 | 1 | equemene | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
122 | 1 | equemene | INFO = 1 |
123 | 1 | equemene | ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
124 | 1 | equemene | + .NOT.LSAME(TRANS,'C')) THEN |
125 | 1 | equemene | INFO = 2 |
126 | 1 | equemene | ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
127 | 1 | equemene | INFO = 3 |
128 | 1 | equemene | ELSE IF (N.LT.0) THEN |
129 | 1 | equemene | INFO = 4 |
130 | 1 | equemene | ELSE IF (INCX.EQ.0) THEN |
131 | 1 | equemene | INFO = 7 |
132 | 1 | equemene | END IF |
133 | 1 | equemene | IF (INFO.NE.0) THEN |
134 | 1 | equemene | CALL XERBLA('ZTPMV ',INFO) |
135 | 1 | equemene | RETURN |
136 | 1 | equemene | END IF |
137 | 1 | equemene | * |
138 | 1 | equemene | * Quick return if possible. |
139 | 1 | equemene | * |
140 | 1 | equemene | IF (N.EQ.0) RETURN |
141 | 1 | equemene | * |
142 | 1 | equemene | NOCONJ = LSAME(TRANS,'T') |
143 | 1 | equemene | NOUNIT = LSAME(DIAG,'N') |
144 | 1 | equemene | * |
145 | 1 | equemene | * Set up the start point in X if the increment is not unity. This |
146 | 1 | equemene | * will be ( N - 1 )*INCX too small for descending loops. |
147 | 1 | equemene | * |
148 | 1 | equemene | IF (INCX.LE.0) THEN |
149 | 1 | equemene | KX = 1 - (N-1)*INCX |
150 | 1 | equemene | ELSE IF (INCX.NE.1) THEN |
151 | 1 | equemene | KX = 1 |
152 | 1 | equemene | END IF |
153 | 1 | equemene | * |
154 | 1 | equemene | * Start the operations. In this version the elements of AP are |
155 | 1 | equemene | * accessed sequentially with one pass through AP. |
156 | 1 | equemene | * |
157 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
158 | 1 | equemene | * |
159 | 1 | equemene | * Form x:= A*x. |
160 | 1 | equemene | * |
161 | 1 | equemene | IF (LSAME(UPLO,'U')) THEN |
162 | 1 | equemene | KK = 1 |
163 | 1 | equemene | IF (INCX.EQ.1) THEN |
164 | 1 | equemene | DO 20 J = 1,N |
165 | 1 | equemene | IF (X(J).NE.ZERO) THEN |
166 | 1 | equemene | TEMP = X(J) |
167 | 1 | equemene | K = KK |
168 | 1 | equemene | DO 10 I = 1,J - 1 |
169 | 1 | equemene | X(I) = X(I) + TEMP*AP(K) |
170 | 1 | equemene | K = K + 1 |
171 | 1 | equemene | 10 CONTINUE |
172 | 1 | equemene | IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) |
173 | 1 | equemene | END IF |
174 | 1 | equemene | KK = KK + J |
175 | 1 | equemene | 20 CONTINUE |
176 | 1 | equemene | ELSE |
177 | 1 | equemene | JX = KX |
178 | 1 | equemene | DO 40 J = 1,N |
179 | 1 | equemene | IF (X(JX).NE.ZERO) THEN |
180 | 1 | equemene | TEMP = X(JX) |
181 | 1 | equemene | IX = KX |
182 | 1 | equemene | DO 30 K = KK,KK + J - 2 |
183 | 1 | equemene | X(IX) = X(IX) + TEMP*AP(K) |
184 | 1 | equemene | IX = IX + INCX |
185 | 1 | equemene | 30 CONTINUE |
186 | 1 | equemene | IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) |
187 | 1 | equemene | END IF |
188 | 1 | equemene | JX = JX + INCX |
189 | 1 | equemene | KK = KK + J |
190 | 1 | equemene | 40 CONTINUE |
191 | 1 | equemene | END IF |
192 | 1 | equemene | ELSE |
193 | 1 | equemene | KK = (N* (N+1))/2 |
194 | 1 | equemene | IF (INCX.EQ.1) THEN |
195 | 1 | equemene | DO 60 J = N,1,-1 |
196 | 1 | equemene | IF (X(J).NE.ZERO) THEN |
197 | 1 | equemene | TEMP = X(J) |
198 | 1 | equemene | K = KK |
199 | 1 | equemene | DO 50 I = N,J + 1,-1 |
200 | 1 | equemene | X(I) = X(I) + TEMP*AP(K) |
201 | 1 | equemene | K = K - 1 |
202 | 1 | equemene | 50 CONTINUE |
203 | 1 | equemene | IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) |
204 | 1 | equemene | END IF |
205 | 1 | equemene | KK = KK - (N-J+1) |
206 | 1 | equemene | 60 CONTINUE |
207 | 1 | equemene | ELSE |
208 | 1 | equemene | KX = KX + (N-1)*INCX |
209 | 1 | equemene | JX = KX |
210 | 1 | equemene | DO 80 J = N,1,-1 |
211 | 1 | equemene | IF (X(JX).NE.ZERO) THEN |
212 | 1 | equemene | TEMP = X(JX) |
213 | 1 | equemene | IX = KX |
214 | 1 | equemene | DO 70 K = KK,KK - (N- (J+1)),-1 |
215 | 1 | equemene | X(IX) = X(IX) + TEMP*AP(K) |
216 | 1 | equemene | IX = IX - INCX |
217 | 1 | equemene | 70 CONTINUE |
218 | 1 | equemene | IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) |
219 | 1 | equemene | END IF |
220 | 1 | equemene | JX = JX - INCX |
221 | 1 | equemene | KK = KK - (N-J+1) |
222 | 1 | equemene | 80 CONTINUE |
223 | 1 | equemene | END IF |
224 | 1 | equemene | END IF |
225 | 1 | equemene | ELSE |
226 | 1 | equemene | * |
227 | 1 | equemene | * Form x := A'*x or x := conjg( A' )*x. |
228 | 1 | equemene | * |
229 | 1 | equemene | IF (LSAME(UPLO,'U')) THEN |
230 | 1 | equemene | KK = (N* (N+1))/2 |
231 | 1 | equemene | IF (INCX.EQ.1) THEN |
232 | 1 | equemene | DO 110 J = N,1,-1 |
233 | 1 | equemene | TEMP = X(J) |
234 | 1 | equemene | K = KK - 1 |
235 | 1 | equemene | IF (NOCONJ) THEN |
236 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*AP(KK) |
237 | 1 | equemene | DO 90 I = J - 1,1,-1 |
238 | 1 | equemene | TEMP = TEMP + AP(K)*X(I) |
239 | 1 | equemene | K = K - 1 |
240 | 1 | equemene | 90 CONTINUE |
241 | 1 | equemene | ELSE |
242 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
243 | 1 | equemene | DO 100 I = J - 1,1,-1 |
244 | 1 | equemene | TEMP = TEMP + DCONJG(AP(K))*X(I) |
245 | 1 | equemene | K = K - 1 |
246 | 1 | equemene | 100 CONTINUE |
247 | 1 | equemene | END IF |
248 | 1 | equemene | X(J) = TEMP |
249 | 1 | equemene | KK = KK - J |
250 | 1 | equemene | 110 CONTINUE |
251 | 1 | equemene | ELSE |
252 | 1 | equemene | JX = KX + (N-1)*INCX |
253 | 1 | equemene | DO 140 J = N,1,-1 |
254 | 1 | equemene | TEMP = X(JX) |
255 | 1 | equemene | IX = JX |
256 | 1 | equemene | IF (NOCONJ) THEN |
257 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*AP(KK) |
258 | 1 | equemene | DO 120 K = KK - 1,KK - J + 1,-1 |
259 | 1 | equemene | IX = IX - INCX |
260 | 1 | equemene | TEMP = TEMP + AP(K)*X(IX) |
261 | 1 | equemene | 120 CONTINUE |
262 | 1 | equemene | ELSE |
263 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
264 | 1 | equemene | DO 130 K = KK - 1,KK - J + 1,-1 |
265 | 1 | equemene | IX = IX - INCX |
266 | 1 | equemene | TEMP = TEMP + DCONJG(AP(K))*X(IX) |
267 | 1 | equemene | 130 CONTINUE |
268 | 1 | equemene | END IF |
269 | 1 | equemene | X(JX) = TEMP |
270 | 1 | equemene | JX = JX - INCX |
271 | 1 | equemene | KK = KK - J |
272 | 1 | equemene | 140 CONTINUE |
273 | 1 | equemene | END IF |
274 | 1 | equemene | ELSE |
275 | 1 | equemene | KK = 1 |
276 | 1 | equemene | IF (INCX.EQ.1) THEN |
277 | 1 | equemene | DO 170 J = 1,N |
278 | 1 | equemene | TEMP = X(J) |
279 | 1 | equemene | K = KK + 1 |
280 | 1 | equemene | IF (NOCONJ) THEN |
281 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*AP(KK) |
282 | 1 | equemene | DO 150 I = J + 1,N |
283 | 1 | equemene | TEMP = TEMP + AP(K)*X(I) |
284 | 1 | equemene | K = K + 1 |
285 | 1 | equemene | 150 CONTINUE |
286 | 1 | equemene | ELSE |
287 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
288 | 1 | equemene | DO 160 I = J + 1,N |
289 | 1 | equemene | TEMP = TEMP + DCONJG(AP(K))*X(I) |
290 | 1 | equemene | K = K + 1 |
291 | 1 | equemene | 160 CONTINUE |
292 | 1 | equemene | END IF |
293 | 1 | equemene | X(J) = TEMP |
294 | 1 | equemene | KK = KK + (N-J+1) |
295 | 1 | equemene | 170 CONTINUE |
296 | 1 | equemene | ELSE |
297 | 1 | equemene | JX = KX |
298 | 1 | equemene | DO 200 J = 1,N |
299 | 1 | equemene | TEMP = X(JX) |
300 | 1 | equemene | IX = JX |
301 | 1 | equemene | IF (NOCONJ) THEN |
302 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*AP(KK) |
303 | 1 | equemene | DO 180 K = KK + 1,KK + N - J |
304 | 1 | equemene | IX = IX + INCX |
305 | 1 | equemene | TEMP = TEMP + AP(K)*X(IX) |
306 | 1 | equemene | 180 CONTINUE |
307 | 1 | equemene | ELSE |
308 | 1 | equemene | IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
309 | 1 | equemene | DO 190 K = KK + 1,KK + N - J |
310 | 1 | equemene | IX = IX + INCX |
311 | 1 | equemene | TEMP = TEMP + DCONJG(AP(K))*X(IX) |
312 | 1 | equemene | 190 CONTINUE |
313 | 1 | equemene | END IF |
314 | 1 | equemene | X(JX) = TEMP |
315 | 1 | equemene | JX = JX + INCX |
316 | 1 | equemene | KK = KK + (N-J+1) |
317 | 1 | equemene | 200 CONTINUE |
318 | 1 | equemene | END IF |
319 | 1 | equemene | END IF |
320 | 1 | equemene | END IF |
321 | 1 | equemene | * |
322 | 1 | equemene | RETURN |
323 | 1 | equemene | * |
324 | 1 | equemene | * End of ZTPMV . |
325 | 1 | equemene | * |
326 | 1 | equemene | END |