Statistiques
| Révision :

root / src / blas / stpmv.f @ 8

Historique | Voir | Annoter | Télécharger (8,93 ko)

1 1 equemene
      SUBROUTINE STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      INTEGER INCX,N
4 1 equemene
      CHARACTER DIAG,TRANS,UPLO
5 1 equemene
*     ..
6 1 equemene
*     .. Array Arguments ..
7 1 equemene
      REAL AP(*),X(*)
8 1 equemene
*     ..
9 1 equemene
*
10 1 equemene
*  Purpose
11 1 equemene
*  =======
12 1 equemene
*
13 1 equemene
*  STPMV  performs one of the matrix-vector operations
14 1 equemene
*
15 1 equemene
*     x := A*x,   or   x := A'*x,
16 1 equemene
*
17 1 equemene
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18 1 equemene
*  upper or lower triangular matrix, supplied in packed form.
19 1 equemene
*
20 1 equemene
*  Arguments
21 1 equemene
*  ==========
22 1 equemene
*
23 1 equemene
*  UPLO   - CHARACTER*1.
24 1 equemene
*           On entry, UPLO specifies whether the matrix is an upper or
25 1 equemene
*           lower triangular matrix as follows:
26 1 equemene
*
27 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28 1 equemene
*
29 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30 1 equemene
*
31 1 equemene
*           Unchanged on exit.
32 1 equemene
*
33 1 equemene
*  TRANS  - CHARACTER*1.
34 1 equemene
*           On entry, TRANS specifies the operation to be performed as
35 1 equemene
*           follows:
36 1 equemene
*
37 1 equemene
*              TRANS = 'N' or 'n'   x := A*x.
38 1 equemene
*
39 1 equemene
*              TRANS = 'T' or 't'   x := A'*x.
40 1 equemene
*
41 1 equemene
*              TRANS = 'C' or 'c'   x := A'*x.
42 1 equemene
*
43 1 equemene
*           Unchanged on exit.
44 1 equemene
*
45 1 equemene
*  DIAG   - CHARACTER*1.
46 1 equemene
*           On entry, DIAG specifies whether or not A is unit
47 1 equemene
*           triangular as follows:
48 1 equemene
*
49 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50 1 equemene
*
51 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52 1 equemene
*                                  triangular.
53 1 equemene
*
54 1 equemene
*           Unchanged on exit.
55 1 equemene
*
56 1 equemene
*  N      - INTEGER.
57 1 equemene
*           On entry, N specifies the order of the matrix A.
58 1 equemene
*           N must be at least zero.
59 1 equemene
*           Unchanged on exit.
60 1 equemene
*
61 1 equemene
*  AP     - REAL             array of DIMENSION at least
62 1 equemene
*           ( ( n*( n + 1 ) )/2 ).
63 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the array AP must
64 1 equemene
*           contain the upper triangular matrix packed sequentially,
65 1 equemene
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
66 1 equemene
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
67 1 equemene
*           respectively, and so on.
68 1 equemene
*           Before entry with UPLO = 'L' or 'l', the array AP must
69 1 equemene
*           contain the lower triangular matrix packed sequentially,
70 1 equemene
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
71 1 equemene
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
72 1 equemene
*           respectively, and so on.
73 1 equemene
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74 1 equemene
*           A are not referenced, but are assumed to be unity.
75 1 equemene
*           Unchanged on exit.
76 1 equemene
*
77 1 equemene
*  X      - REAL             array of dimension at least
78 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
79 1 equemene
*           Before entry, the incremented array X must contain the n
80 1 equemene
*           element vector x. On exit, X is overwritten with the
81 1 equemene
*           tranformed vector x.
82 1 equemene
*
83 1 equemene
*  INCX   - INTEGER.
84 1 equemene
*           On entry, INCX specifies the increment for the elements of
85 1 equemene
*           X. INCX must not be zero.
86 1 equemene
*           Unchanged on exit.
87 1 equemene
*
88 1 equemene
*
89 1 equemene
*  Level 2 Blas routine.
90 1 equemene
*
91 1 equemene
*  -- Written on 22-October-1986.
92 1 equemene
*     Jack Dongarra, Argonne National Lab.
93 1 equemene
*     Jeremy Du Croz, Nag Central Office.
94 1 equemene
*     Sven Hammarling, Nag Central Office.
95 1 equemene
*     Richard Hanson, Sandia National Labs.
96 1 equemene
*
97 1 equemene
*
98 1 equemene
*     .. Parameters ..
99 1 equemene
      REAL ZERO
100 1 equemene
      PARAMETER (ZERO=0.0E+0)
101 1 equemene
*     ..
102 1 equemene
*     .. Local Scalars ..
103 1 equemene
      REAL TEMP
104 1 equemene
      INTEGER I,INFO,IX,J,JX,K,KK,KX
105 1 equemene
      LOGICAL NOUNIT
106 1 equemene
*     ..
107 1 equemene
*     .. External Functions ..
108 1 equemene
      LOGICAL LSAME
109 1 equemene
      EXTERNAL LSAME
110 1 equemene
*     ..
111 1 equemene
*     .. External Subroutines ..
112 1 equemene
      EXTERNAL XERBLA
113 1 equemene
*     ..
114 1 equemene
*
115 1 equemene
*     Test the input parameters.
116 1 equemene
*
117 1 equemene
      INFO = 0
118 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
119 1 equemene
          INFO = 1
120 1 equemene
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
121 1 equemene
     +         .NOT.LSAME(TRANS,'C')) THEN
122 1 equemene
          INFO = 2
123 1 equemene
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
124 1 equemene
          INFO = 3
125 1 equemene
      ELSE IF (N.LT.0) THEN
126 1 equemene
          INFO = 4
127 1 equemene
      ELSE IF (INCX.EQ.0) THEN
128 1 equemene
          INFO = 7
129 1 equemene
      END IF
130 1 equemene
      IF (INFO.NE.0) THEN
131 1 equemene
          CALL XERBLA('STPMV ',INFO)
132 1 equemene
          RETURN
133 1 equemene
      END IF
134 1 equemene
*
135 1 equemene
*     Quick return if possible.
136 1 equemene
*
137 1 equemene
      IF (N.EQ.0) RETURN
138 1 equemene
*
139 1 equemene
      NOUNIT = LSAME(DIAG,'N')
140 1 equemene
*
141 1 equemene
*     Set up the start point in X if the increment is not unity. This
142 1 equemene
*     will be  ( N - 1 )*INCX  too small for descending loops.
143 1 equemene
*
144 1 equemene
      IF (INCX.LE.0) THEN
145 1 equemene
          KX = 1 - (N-1)*INCX
146 1 equemene
      ELSE IF (INCX.NE.1) THEN
147 1 equemene
          KX = 1
148 1 equemene
      END IF
149 1 equemene
*
150 1 equemene
*     Start the operations. In this version the elements of AP are
151 1 equemene
*     accessed sequentially with one pass through AP.
152 1 equemene
*
153 1 equemene
      IF (LSAME(TRANS,'N')) THEN
154 1 equemene
*
155 1 equemene
*        Form  x:= A*x.
156 1 equemene
*
157 1 equemene
          IF (LSAME(UPLO,'U')) THEN
158 1 equemene
              KK = 1
159 1 equemene
              IF (INCX.EQ.1) THEN
160 1 equemene
                  DO 20 J = 1,N
161 1 equemene
                      IF (X(J).NE.ZERO) THEN
162 1 equemene
                          TEMP = X(J)
163 1 equemene
                          K = KK
164 1 equemene
                          DO 10 I = 1,J - 1
165 1 equemene
                              X(I) = X(I) + TEMP*AP(K)
166 1 equemene
                              K = K + 1
167 1 equemene
   10                     CONTINUE
168 1 equemene
                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
169 1 equemene
                      END IF
170 1 equemene
                      KK = KK + J
171 1 equemene
   20             CONTINUE
172 1 equemene
              ELSE
173 1 equemene
                  JX = KX
174 1 equemene
                  DO 40 J = 1,N
175 1 equemene
                      IF (X(JX).NE.ZERO) THEN
176 1 equemene
                          TEMP = X(JX)
177 1 equemene
                          IX = KX
178 1 equemene
                          DO 30 K = KK,KK + J - 2
179 1 equemene
                              X(IX) = X(IX) + TEMP*AP(K)
180 1 equemene
                              IX = IX + INCX
181 1 equemene
   30                     CONTINUE
182 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
183 1 equemene
                      END IF
184 1 equemene
                      JX = JX + INCX
185 1 equemene
                      KK = KK + J
186 1 equemene
   40             CONTINUE
187 1 equemene
              END IF
188 1 equemene
          ELSE
189 1 equemene
              KK = (N* (N+1))/2
190 1 equemene
              IF (INCX.EQ.1) THEN
191 1 equemene
                  DO 60 J = N,1,-1
192 1 equemene
                      IF (X(J).NE.ZERO) THEN
193 1 equemene
                          TEMP = X(J)
194 1 equemene
                          K = KK
195 1 equemene
                          DO 50 I = N,J + 1,-1
196 1 equemene
                              X(I) = X(I) + TEMP*AP(K)
197 1 equemene
                              K = K - 1
198 1 equemene
   50                     CONTINUE
199 1 equemene
                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
200 1 equemene
                      END IF
201 1 equemene
                      KK = KK - (N-J+1)
202 1 equemene
   60             CONTINUE
203 1 equemene
              ELSE
204 1 equemene
                  KX = KX + (N-1)*INCX
205 1 equemene
                  JX = KX
206 1 equemene
                  DO 80 J = N,1,-1
207 1 equemene
                      IF (X(JX).NE.ZERO) THEN
208 1 equemene
                          TEMP = X(JX)
209 1 equemene
                          IX = KX
210 1 equemene
                          DO 70 K = KK,KK - (N- (J+1)),-1
211 1 equemene
                              X(IX) = X(IX) + TEMP*AP(K)
212 1 equemene
                              IX = IX - INCX
213 1 equemene
   70                     CONTINUE
214 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
215 1 equemene
                      END IF
216 1 equemene
                      JX = JX - INCX
217 1 equemene
                      KK = KK - (N-J+1)
218 1 equemene
   80             CONTINUE
219 1 equemene
              END IF
220 1 equemene
          END IF
221 1 equemene
      ELSE
222 1 equemene
*
223 1 equemene
*        Form  x := A'*x.
224 1 equemene
*
225 1 equemene
          IF (LSAME(UPLO,'U')) THEN
226 1 equemene
              KK = (N* (N+1))/2
227 1 equemene
              IF (INCX.EQ.1) THEN
228 1 equemene
                  DO 100 J = N,1,-1
229 1 equemene
                      TEMP = X(J)
230 1 equemene
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
231 1 equemene
                      K = KK - 1
232 1 equemene
                      DO 90 I = J - 1,1,-1
233 1 equemene
                          TEMP = TEMP + AP(K)*X(I)
234 1 equemene
                          K = K - 1
235 1 equemene
   90                 CONTINUE
236 1 equemene
                      X(J) = TEMP
237 1 equemene
                      KK = KK - J
238 1 equemene
  100             CONTINUE
239 1 equemene
              ELSE
240 1 equemene
                  JX = KX + (N-1)*INCX
241 1 equemene
                  DO 120 J = N,1,-1
242 1 equemene
                      TEMP = X(JX)
243 1 equemene
                      IX = JX
244 1 equemene
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
245 1 equemene
                      DO 110 K = KK - 1,KK - J + 1,-1
246 1 equemene
                          IX = IX - INCX
247 1 equemene
                          TEMP = TEMP + AP(K)*X(IX)
248 1 equemene
  110                 CONTINUE
249 1 equemene
                      X(JX) = TEMP
250 1 equemene
                      JX = JX - INCX
251 1 equemene
                      KK = KK - J
252 1 equemene
  120             CONTINUE
253 1 equemene
              END IF
254 1 equemene
          ELSE
255 1 equemene
              KK = 1
256 1 equemene
              IF (INCX.EQ.1) THEN
257 1 equemene
                  DO 140 J = 1,N
258 1 equemene
                      TEMP = X(J)
259 1 equemene
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
260 1 equemene
                      K = KK + 1
261 1 equemene
                      DO 130 I = J + 1,N
262 1 equemene
                          TEMP = TEMP + AP(K)*X(I)
263 1 equemene
                          K = K + 1
264 1 equemene
  130                 CONTINUE
265 1 equemene
                      X(J) = TEMP
266 1 equemene
                      KK = KK + (N-J+1)
267 1 equemene
  140             CONTINUE
268 1 equemene
              ELSE
269 1 equemene
                  JX = KX
270 1 equemene
                  DO 160 J = 1,N
271 1 equemene
                      TEMP = X(JX)
272 1 equemene
                      IX = JX
273 1 equemene
                      IF (NOUNIT) TEMP = TEMP*AP(KK)
274 1 equemene
                      DO 150 K = KK + 1,KK + N - J
275 1 equemene
                          IX = IX + INCX
276 1 equemene
                          TEMP = TEMP + AP(K)*X(IX)
277 1 equemene
  150                 CONTINUE
278 1 equemene
                      X(JX) = TEMP
279 1 equemene
                      JX = JX + INCX
280 1 equemene
                      KK = KK + (N-J+1)
281 1 equemene
  160             CONTINUE
282 1 equemene
              END IF
283 1 equemene
          END IF
284 1 equemene
      END IF
285 1 equemene
*
286 1 equemene
      RETURN
287 1 equemene
*
288 1 equemene
*     End of STPMV .
289 1 equemene
*
290 1 equemene
      END