Statistiques
| Révision :

root / src / blas / stbsv.f @ 8

Historique | Voir | Annoter | Télécharger (10,86 ko)

1 1 equemene
      SUBROUTINE STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      INTEGER INCX,K,LDA,N
4 1 equemene
      CHARACTER DIAG,TRANS,UPLO
5 1 equemene
*     ..
6 1 equemene
*     .. Array Arguments ..
7 1 equemene
      REAL A(LDA,*),X(*)
8 1 equemene
*     ..
9 1 equemene
*
10 1 equemene
*  Purpose
11 1 equemene
*  =======
12 1 equemene
*
13 1 equemene
*  STBSV  solves one of the systems of equations
14 1 equemene
*
15 1 equemene
*     A*x = b,   or   A'*x = b,
16 1 equemene
*
17 1 equemene
*  where b and x are n element vectors and A is an n by n unit, or
18 1 equemene
*  non-unit, upper or lower triangular band matrix, with ( k + 1 )
19 1 equemene
*  diagonals.
20 1 equemene
*
21 1 equemene
*  No test for singularity or near-singularity is included in this
22 1 equemene
*  routine. Such tests must be performed before calling this routine.
23 1 equemene
*
24 1 equemene
*  Arguments
25 1 equemene
*  ==========
26 1 equemene
*
27 1 equemene
*  UPLO   - CHARACTER*1.
28 1 equemene
*           On entry, UPLO specifies whether the matrix is an upper or
29 1 equemene
*           lower triangular matrix as follows:
30 1 equemene
*
31 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
32 1 equemene
*
33 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  TRANS  - CHARACTER*1.
38 1 equemene
*           On entry, TRANS specifies the equations to be solved as
39 1 equemene
*           follows:
40 1 equemene
*
41 1 equemene
*              TRANS = 'N' or 'n'   A*x = b.
42 1 equemene
*
43 1 equemene
*              TRANS = 'T' or 't'   A'*x = b.
44 1 equemene
*
45 1 equemene
*              TRANS = 'C' or 'c'   A'*x = b.
46 1 equemene
*
47 1 equemene
*           Unchanged on exit.
48 1 equemene
*
49 1 equemene
*  DIAG   - CHARACTER*1.
50 1 equemene
*           On entry, DIAG specifies whether or not A is unit
51 1 equemene
*           triangular as follows:
52 1 equemene
*
53 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
54 1 equemene
*
55 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
56 1 equemene
*                                  triangular.
57 1 equemene
*
58 1 equemene
*           Unchanged on exit.
59 1 equemene
*
60 1 equemene
*  N      - INTEGER.
61 1 equemene
*           On entry, N specifies the order of the matrix A.
62 1 equemene
*           N must be at least zero.
63 1 equemene
*           Unchanged on exit.
64 1 equemene
*
65 1 equemene
*  K      - INTEGER.
66 1 equemene
*           On entry with UPLO = 'U' or 'u', K specifies the number of
67 1 equemene
*           super-diagonals of the matrix A.
68 1 equemene
*           On entry with UPLO = 'L' or 'l', K specifies the number of
69 1 equemene
*           sub-diagonals of the matrix A.
70 1 equemene
*           K must satisfy  0 .le. K.
71 1 equemene
*           Unchanged on exit.
72 1 equemene
*
73 1 equemene
*  A      - REAL             array of DIMENSION ( LDA, n ).
74 1 equemene
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
75 1 equemene
*           by n part of the array A must contain the upper triangular
76 1 equemene
*           band part of the matrix of coefficients, supplied column by
77 1 equemene
*           column, with the leading diagonal of the matrix in row
78 1 equemene
*           ( k + 1 ) of the array, the first super-diagonal starting at
79 1 equemene
*           position 2 in row k, and so on. The top left k by k triangle
80 1 equemene
*           of the array A is not referenced.
81 1 equemene
*           The following program segment will transfer an upper
82 1 equemene
*           triangular band matrix from conventional full matrix storage
83 1 equemene
*           to band storage:
84 1 equemene
*
85 1 equemene
*                 DO 20, J = 1, N
86 1 equemene
*                    M = K + 1 - J
87 1 equemene
*                    DO 10, I = MAX( 1, J - K ), J
88 1 equemene
*                       A( M + I, J ) = matrix( I, J )
89 1 equemene
*              10    CONTINUE
90 1 equemene
*              20 CONTINUE
91 1 equemene
*
92 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
93 1 equemene
*           by n part of the array A must contain the lower triangular
94 1 equemene
*           band part of the matrix of coefficients, supplied column by
95 1 equemene
*           column, with the leading diagonal of the matrix in row 1 of
96 1 equemene
*           the array, the first sub-diagonal starting at position 1 in
97 1 equemene
*           row 2, and so on. The bottom right k by k triangle of the
98 1 equemene
*           array A is not referenced.
99 1 equemene
*           The following program segment will transfer a lower
100 1 equemene
*           triangular band matrix from conventional full matrix storage
101 1 equemene
*           to band storage:
102 1 equemene
*
103 1 equemene
*                 DO 20, J = 1, N
104 1 equemene
*                    M = 1 - J
105 1 equemene
*                    DO 10, I = J, MIN( N, J + K )
106 1 equemene
*                       A( M + I, J ) = matrix( I, J )
107 1 equemene
*              10    CONTINUE
108 1 equemene
*              20 CONTINUE
109 1 equemene
*
110 1 equemene
*           Note that when DIAG = 'U' or 'u' the elements of the array A
111 1 equemene
*           corresponding to the diagonal elements of the matrix are not
112 1 equemene
*           referenced, but are assumed to be unity.
113 1 equemene
*           Unchanged on exit.
114 1 equemene
*
115 1 equemene
*  LDA    - INTEGER.
116 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
117 1 equemene
*           in the calling (sub) program. LDA must be at least
118 1 equemene
*           ( k + 1 ).
119 1 equemene
*           Unchanged on exit.
120 1 equemene
*
121 1 equemene
*  X      - REAL             array of dimension at least
122 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
123 1 equemene
*           Before entry, the incremented array X must contain the n
124 1 equemene
*           element right-hand side vector b. On exit, X is overwritten
125 1 equemene
*           with the solution vector x.
126 1 equemene
*
127 1 equemene
*  INCX   - INTEGER.
128 1 equemene
*           On entry, INCX specifies the increment for the elements of
129 1 equemene
*           X. INCX must not be zero.
130 1 equemene
*           Unchanged on exit.
131 1 equemene
*
132 1 equemene
*
133 1 equemene
*  Level 2 Blas routine.
134 1 equemene
*
135 1 equemene
*  -- Written on 22-October-1986.
136 1 equemene
*     Jack Dongarra, Argonne National Lab.
137 1 equemene
*     Jeremy Du Croz, Nag Central Office.
138 1 equemene
*     Sven Hammarling, Nag Central Office.
139 1 equemene
*     Richard Hanson, Sandia National Labs.
140 1 equemene
*
141 1 equemene
*
142 1 equemene
*     .. Parameters ..
143 1 equemene
      REAL ZERO
144 1 equemene
      PARAMETER (ZERO=0.0E+0)
145 1 equemene
*     ..
146 1 equemene
*     .. Local Scalars ..
147 1 equemene
      REAL TEMP
148 1 equemene
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
149 1 equemene
      LOGICAL NOUNIT
150 1 equemene
*     ..
151 1 equemene
*     .. External Functions ..
152 1 equemene
      LOGICAL LSAME
153 1 equemene
      EXTERNAL LSAME
154 1 equemene
*     ..
155 1 equemene
*     .. External Subroutines ..
156 1 equemene
      EXTERNAL XERBLA
157 1 equemene
*     ..
158 1 equemene
*     .. Intrinsic Functions ..
159 1 equemene
      INTRINSIC MAX,MIN
160 1 equemene
*     ..
161 1 equemene
*
162 1 equemene
*     Test the input parameters.
163 1 equemene
*
164 1 equemene
      INFO = 0
165 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
166 1 equemene
          INFO = 1
167 1 equemene
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
168 1 equemene
     +         .NOT.LSAME(TRANS,'C')) THEN
169 1 equemene
          INFO = 2
170 1 equemene
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
171 1 equemene
          INFO = 3
172 1 equemene
      ELSE IF (N.LT.0) THEN
173 1 equemene
          INFO = 4
174 1 equemene
      ELSE IF (K.LT.0) THEN
175 1 equemene
          INFO = 5
176 1 equemene
      ELSE IF (LDA.LT. (K+1)) THEN
177 1 equemene
          INFO = 7
178 1 equemene
      ELSE IF (INCX.EQ.0) THEN
179 1 equemene
          INFO = 9
180 1 equemene
      END IF
181 1 equemene
      IF (INFO.NE.0) THEN
182 1 equemene
          CALL XERBLA('STBSV ',INFO)
183 1 equemene
          RETURN
184 1 equemene
      END IF
185 1 equemene
*
186 1 equemene
*     Quick return if possible.
187 1 equemene
*
188 1 equemene
      IF (N.EQ.0) RETURN
189 1 equemene
*
190 1 equemene
      NOUNIT = LSAME(DIAG,'N')
191 1 equemene
*
192 1 equemene
*     Set up the start point in X if the increment is not unity. This
193 1 equemene
*     will be  ( N - 1 )*INCX  too small for descending loops.
194 1 equemene
*
195 1 equemene
      IF (INCX.LE.0) THEN
196 1 equemene
          KX = 1 - (N-1)*INCX
197 1 equemene
      ELSE IF (INCX.NE.1) THEN
198 1 equemene
          KX = 1
199 1 equemene
      END IF
200 1 equemene
*
201 1 equemene
*     Start the operations. In this version the elements of A are
202 1 equemene
*     accessed by sequentially with one pass through A.
203 1 equemene
*
204 1 equemene
      IF (LSAME(TRANS,'N')) THEN
205 1 equemene
*
206 1 equemene
*        Form  x := inv( A )*x.
207 1 equemene
*
208 1 equemene
          IF (LSAME(UPLO,'U')) THEN
209 1 equemene
              KPLUS1 = K + 1
210 1 equemene
              IF (INCX.EQ.1) THEN
211 1 equemene
                  DO 20 J = N,1,-1
212 1 equemene
                      IF (X(J).NE.ZERO) THEN
213 1 equemene
                          L = KPLUS1 - J
214 1 equemene
                          IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
215 1 equemene
                          TEMP = X(J)
216 1 equemene
                          DO 10 I = J - 1,MAX(1,J-K),-1
217 1 equemene
                              X(I) = X(I) - TEMP*A(L+I,J)
218 1 equemene
   10                     CONTINUE
219 1 equemene
                      END IF
220 1 equemene
   20             CONTINUE
221 1 equemene
              ELSE
222 1 equemene
                  KX = KX + (N-1)*INCX
223 1 equemene
                  JX = KX
224 1 equemene
                  DO 40 J = N,1,-1
225 1 equemene
                      KX = KX - INCX
226 1 equemene
                      IF (X(JX).NE.ZERO) THEN
227 1 equemene
                          IX = KX
228 1 equemene
                          L = KPLUS1 - J
229 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
230 1 equemene
                          TEMP = X(JX)
231 1 equemene
                          DO 30 I = J - 1,MAX(1,J-K),-1
232 1 equemene
                              X(IX) = X(IX) - TEMP*A(L+I,J)
233 1 equemene
                              IX = IX - INCX
234 1 equemene
   30                     CONTINUE
235 1 equemene
                      END IF
236 1 equemene
                      JX = JX - INCX
237 1 equemene
   40             CONTINUE
238 1 equemene
              END IF
239 1 equemene
          ELSE
240 1 equemene
              IF (INCX.EQ.1) THEN
241 1 equemene
                  DO 60 J = 1,N
242 1 equemene
                      IF (X(J).NE.ZERO) THEN
243 1 equemene
                          L = 1 - J
244 1 equemene
                          IF (NOUNIT) X(J) = X(J)/A(1,J)
245 1 equemene
                          TEMP = X(J)
246 1 equemene
                          DO 50 I = J + 1,MIN(N,J+K)
247 1 equemene
                              X(I) = X(I) - TEMP*A(L+I,J)
248 1 equemene
   50                     CONTINUE
249 1 equemene
                      END IF
250 1 equemene
   60             CONTINUE
251 1 equemene
              ELSE
252 1 equemene
                  JX = KX
253 1 equemene
                  DO 80 J = 1,N
254 1 equemene
                      KX = KX + INCX
255 1 equemene
                      IF (X(JX).NE.ZERO) THEN
256 1 equemene
                          IX = KX
257 1 equemene
                          L = 1 - J
258 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)/A(1,J)
259 1 equemene
                          TEMP = X(JX)
260 1 equemene
                          DO 70 I = J + 1,MIN(N,J+K)
261 1 equemene
                              X(IX) = X(IX) - TEMP*A(L+I,J)
262 1 equemene
                              IX = IX + INCX
263 1 equemene
   70                     CONTINUE
264 1 equemene
                      END IF
265 1 equemene
                      JX = JX + INCX
266 1 equemene
   80             CONTINUE
267 1 equemene
              END IF
268 1 equemene
          END IF
269 1 equemene
      ELSE
270 1 equemene
*
271 1 equemene
*        Form  x := inv( A')*x.
272 1 equemene
*
273 1 equemene
          IF (LSAME(UPLO,'U')) THEN
274 1 equemene
              KPLUS1 = K + 1
275 1 equemene
              IF (INCX.EQ.1) THEN
276 1 equemene
                  DO 100 J = 1,N
277 1 equemene
                      TEMP = X(J)
278 1 equemene
                      L = KPLUS1 - J
279 1 equemene
                      DO 90 I = MAX(1,J-K),J - 1
280 1 equemene
                          TEMP = TEMP - A(L+I,J)*X(I)
281 1 equemene
   90                 CONTINUE
282 1 equemene
                      IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
283 1 equemene
                      X(J) = TEMP
284 1 equemene
  100             CONTINUE
285 1 equemene
              ELSE
286 1 equemene
                  JX = KX
287 1 equemene
                  DO 120 J = 1,N
288 1 equemene
                      TEMP = X(JX)
289 1 equemene
                      IX = KX
290 1 equemene
                      L = KPLUS1 - J
291 1 equemene
                      DO 110 I = MAX(1,J-K),J - 1
292 1 equemene
                          TEMP = TEMP - A(L+I,J)*X(IX)
293 1 equemene
                          IX = IX + INCX
294 1 equemene
  110                 CONTINUE
295 1 equemene
                      IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
296 1 equemene
                      X(JX) = TEMP
297 1 equemene
                      JX = JX + INCX
298 1 equemene
                      IF (J.GT.K) KX = KX + INCX
299 1 equemene
  120             CONTINUE
300 1 equemene
              END IF
301 1 equemene
          ELSE
302 1 equemene
              IF (INCX.EQ.1) THEN
303 1 equemene
                  DO 140 J = N,1,-1
304 1 equemene
                      TEMP = X(J)
305 1 equemene
                      L = 1 - J
306 1 equemene
                      DO 130 I = MIN(N,J+K),J + 1,-1
307 1 equemene
                          TEMP = TEMP - A(L+I,J)*X(I)
308 1 equemene
  130                 CONTINUE
309 1 equemene
                      IF (NOUNIT) TEMP = TEMP/A(1,J)
310 1 equemene
                      X(J) = TEMP
311 1 equemene
  140             CONTINUE
312 1 equemene
              ELSE
313 1 equemene
                  KX = KX + (N-1)*INCX
314 1 equemene
                  JX = KX
315 1 equemene
                  DO 160 J = N,1,-1
316 1 equemene
                      TEMP = X(JX)
317 1 equemene
                      IX = KX
318 1 equemene
                      L = 1 - J
319 1 equemene
                      DO 150 I = MIN(N,J+K),J + 1,-1
320 1 equemene
                          TEMP = TEMP - A(L+I,J)*X(IX)
321 1 equemene
                          IX = IX - INCX
322 1 equemene
  150                 CONTINUE
323 1 equemene
                      IF (NOUNIT) TEMP = TEMP/A(1,J)
324 1 equemene
                      X(JX) = TEMP
325 1 equemene
                      JX = JX - INCX
326 1 equemene
                      IF ((N-J).GE.K) KX = KX - INCX
327 1 equemene
  160             CONTINUE
328 1 equemene
              END IF
329 1 equemene
          END IF
330 1 equemene
      END IF
331 1 equemene
*
332 1 equemene
      RETURN
333 1 equemene
*
334 1 equemene
*     End of STBSV .
335 1 equemene
*
336 1 equemene
      END