Statistiques
| Révision :

root / src / blas / sspr2.f @ 8

Historique | Voir | Annoter | Télécharger (6,95 ko)

1 1 equemene
      SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      REAL ALPHA
4 1 equemene
      INTEGER INCX,INCY,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      REAL AP(*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  SSPR2  performs the symmetric rank 2 operation
15 1 equemene
*
16 1 equemene
*     A := alpha*x*y' + alpha*y*x' + A,
17 1 equemene
*
18 1 equemene
*  where alpha is a scalar, x and y are n element vectors and A is an
19 1 equemene
*  n by n symmetric matrix, supplied in packed form.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the matrix A is supplied in the packed
27 1 equemene
*           array AP as follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 equemene
*                                  supplied in AP.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 equemene
*                                  supplied in AP.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - REAL            .
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  X      - REAL             array of dimension at least
47 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 equemene
*           Before entry, the incremented array X must contain the n
49 1 equemene
*           element vector x.
50 1 equemene
*           Unchanged on exit.
51 1 equemene
*
52 1 equemene
*  INCX   - INTEGER.
53 1 equemene
*           On entry, INCX specifies the increment for the elements of
54 1 equemene
*           X. INCX must not be zero.
55 1 equemene
*           Unchanged on exit.
56 1 equemene
*
57 1 equemene
*  Y      - REAL             array of dimension at least
58 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
59 1 equemene
*           Before entry, the incremented array Y must contain the n
60 1 equemene
*           element vector y.
61 1 equemene
*           Unchanged on exit.
62 1 equemene
*
63 1 equemene
*  INCY   - INTEGER.
64 1 equemene
*           On entry, INCY specifies the increment for the elements of
65 1 equemene
*           Y. INCY must not be zero.
66 1 equemene
*           Unchanged on exit.
67 1 equemene
*
68 1 equemene
*  AP     - REAL             array of DIMENSION at least
69 1 equemene
*           ( ( n*( n + 1 ) )/2 ).
70 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the array AP must
71 1 equemene
*           contain the upper triangular part of the symmetric matrix
72 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
73 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
74 1 equemene
*           and a( 2, 2 ) respectively, and so on. On exit, the array
75 1 equemene
*           AP is overwritten by the upper triangular part of the
76 1 equemene
*           updated matrix.
77 1 equemene
*           Before entry with UPLO = 'L' or 'l', the array AP must
78 1 equemene
*           contain the lower triangular part of the symmetric matrix
79 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
80 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
81 1 equemene
*           and a( 3, 1 ) respectively, and so on. On exit, the array
82 1 equemene
*           AP is overwritten by the lower triangular part of the
83 1 equemene
*           updated matrix.
84 1 equemene
*
85 1 equemene
*
86 1 equemene
*  Level 2 Blas routine.
87 1 equemene
*
88 1 equemene
*  -- Written on 22-October-1986.
89 1 equemene
*     Jack Dongarra, Argonne National Lab.
90 1 equemene
*     Jeremy Du Croz, Nag Central Office.
91 1 equemene
*     Sven Hammarling, Nag Central Office.
92 1 equemene
*     Richard Hanson, Sandia National Labs.
93 1 equemene
*
94 1 equemene
*
95 1 equemene
*     .. Parameters ..
96 1 equemene
      REAL ZERO
97 1 equemene
      PARAMETER (ZERO=0.0E+0)
98 1 equemene
*     ..
99 1 equemene
*     .. Local Scalars ..
100 1 equemene
      REAL TEMP1,TEMP2
101 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
102 1 equemene
*     ..
103 1 equemene
*     .. External Functions ..
104 1 equemene
      LOGICAL LSAME
105 1 equemene
      EXTERNAL LSAME
106 1 equemene
*     ..
107 1 equemene
*     .. External Subroutines ..
108 1 equemene
      EXTERNAL XERBLA
109 1 equemene
*     ..
110 1 equemene
*
111 1 equemene
*     Test the input parameters.
112 1 equemene
*
113 1 equemene
      INFO = 0
114 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
115 1 equemene
          INFO = 1
116 1 equemene
      ELSE IF (N.LT.0) THEN
117 1 equemene
          INFO = 2
118 1 equemene
      ELSE IF (INCX.EQ.0) THEN
119 1 equemene
          INFO = 5
120 1 equemene
      ELSE IF (INCY.EQ.0) THEN
121 1 equemene
          INFO = 7
122 1 equemene
      END IF
123 1 equemene
      IF (INFO.NE.0) THEN
124 1 equemene
          CALL XERBLA('SSPR2 ',INFO)
125 1 equemene
          RETURN
126 1 equemene
      END IF
127 1 equemene
*
128 1 equemene
*     Quick return if possible.
129 1 equemene
*
130 1 equemene
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
131 1 equemene
*
132 1 equemene
*     Set up the start points in X and Y if the increments are not both
133 1 equemene
*     unity.
134 1 equemene
*
135 1 equemene
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
136 1 equemene
          IF (INCX.GT.0) THEN
137 1 equemene
              KX = 1
138 1 equemene
          ELSE
139 1 equemene
              KX = 1 - (N-1)*INCX
140 1 equemene
          END IF
141 1 equemene
          IF (INCY.GT.0) THEN
142 1 equemene
              KY = 1
143 1 equemene
          ELSE
144 1 equemene
              KY = 1 - (N-1)*INCY
145 1 equemene
          END IF
146 1 equemene
          JX = KX
147 1 equemene
          JY = KY
148 1 equemene
      END IF
149 1 equemene
*
150 1 equemene
*     Start the operations. In this version the elements of the array AP
151 1 equemene
*     are accessed sequentially with one pass through AP.
152 1 equemene
*
153 1 equemene
      KK = 1
154 1 equemene
      IF (LSAME(UPLO,'U')) THEN
155 1 equemene
*
156 1 equemene
*        Form  A  when upper triangle is stored in AP.
157 1 equemene
*
158 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
159 1 equemene
              DO 20 J = 1,N
160 1 equemene
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
161 1 equemene
                      TEMP1 = ALPHA*Y(J)
162 1 equemene
                      TEMP2 = ALPHA*X(J)
163 1 equemene
                      K = KK
164 1 equemene
                      DO 10 I = 1,J
165 1 equemene
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
166 1 equemene
                          K = K + 1
167 1 equemene
   10                 CONTINUE
168 1 equemene
                  END IF
169 1 equemene
                  KK = KK + J
170 1 equemene
   20         CONTINUE
171 1 equemene
          ELSE
172 1 equemene
              DO 40 J = 1,N
173 1 equemene
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
174 1 equemene
                      TEMP1 = ALPHA*Y(JY)
175 1 equemene
                      TEMP2 = ALPHA*X(JX)
176 1 equemene
                      IX = KX
177 1 equemene
                      IY = KY
178 1 equemene
                      DO 30 K = KK,KK + J - 1
179 1 equemene
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
180 1 equemene
                          IX = IX + INCX
181 1 equemene
                          IY = IY + INCY
182 1 equemene
   30                 CONTINUE
183 1 equemene
                  END IF
184 1 equemene
                  JX = JX + INCX
185 1 equemene
                  JY = JY + INCY
186 1 equemene
                  KK = KK + J
187 1 equemene
   40         CONTINUE
188 1 equemene
          END IF
189 1 equemene
      ELSE
190 1 equemene
*
191 1 equemene
*        Form  A  when lower triangle is stored in AP.
192 1 equemene
*
193 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
194 1 equemene
              DO 60 J = 1,N
195 1 equemene
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
196 1 equemene
                      TEMP1 = ALPHA*Y(J)
197 1 equemene
                      TEMP2 = ALPHA*X(J)
198 1 equemene
                      K = KK
199 1 equemene
                      DO 50 I = J,N
200 1 equemene
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
201 1 equemene
                          K = K + 1
202 1 equemene
   50                 CONTINUE
203 1 equemene
                  END IF
204 1 equemene
                  KK = KK + N - J + 1
205 1 equemene
   60         CONTINUE
206 1 equemene
          ELSE
207 1 equemene
              DO 80 J = 1,N
208 1 equemene
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
209 1 equemene
                      TEMP1 = ALPHA*Y(JY)
210 1 equemene
                      TEMP2 = ALPHA*X(JX)
211 1 equemene
                      IX = JX
212 1 equemene
                      IY = JY
213 1 equemene
                      DO 70 K = KK,KK + N - J
214 1 equemene
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
215 1 equemene
                          IX = IX + INCX
216 1 equemene
                          IY = IY + INCY
217 1 equemene
   70                 CONTINUE
218 1 equemene
                  END IF
219 1 equemene
                  JX = JX + INCX
220 1 equemene
                  JY = JY + INCY
221 1 equemene
                  KK = KK + N - J + 1
222 1 equemene
   80         CONTINUE
223 1 equemene
          END IF
224 1 equemene
      END IF
225 1 equemene
*
226 1 equemene
      RETURN
227 1 equemene
*
228 1 equemene
*     End of SSPR2 .
229 1 equemene
*
230 1 equemene
      END