root / src / blas / dsyr2k.f @ 8
Historique | Voir | Annoter | Télécharger (10,61 ko)
1 | 1 | equemene | SUBROUTINE DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | DOUBLE PRECISION ALPHA,BETA |
4 | 1 | equemene | INTEGER K,LDA,LDB,LDC,N |
5 | 1 | equemene | CHARACTER TRANS,UPLO |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * DSYR2K performs one of the symmetric rank 2k operations |
15 | 1 | equemene | * |
16 | 1 | equemene | * C := alpha*A*B' + alpha*B*A' + beta*C, |
17 | 1 | equemene | * |
18 | 1 | equemene | * or |
19 | 1 | equemene | * |
20 | 1 | equemene | * C := alpha*A'*B + alpha*B'*A + beta*C, |
21 | 1 | equemene | * |
22 | 1 | equemene | * where alpha and beta are scalars, C is an n by n symmetric matrix |
23 | 1 | equemene | * and A and B are n by k matrices in the first case and k by n |
24 | 1 | equemene | * matrices in the second case. |
25 | 1 | equemene | * |
26 | 1 | equemene | * Arguments |
27 | 1 | equemene | * ========== |
28 | 1 | equemene | * |
29 | 1 | equemene | * UPLO - CHARACTER*1. |
30 | 1 | equemene | * On entry, UPLO specifies whether the upper or lower |
31 | 1 | equemene | * triangular part of the array C is to be referenced as |
32 | 1 | equemene | * follows: |
33 | 1 | equemene | * |
34 | 1 | equemene | * UPLO = 'U' or 'u' Only the upper triangular part of C |
35 | 1 | equemene | * is to be referenced. |
36 | 1 | equemene | * |
37 | 1 | equemene | * UPLO = 'L' or 'l' Only the lower triangular part of C |
38 | 1 | equemene | * is to be referenced. |
39 | 1 | equemene | * |
40 | 1 | equemene | * Unchanged on exit. |
41 | 1 | equemene | * |
42 | 1 | equemene | * TRANS - CHARACTER*1. |
43 | 1 | equemene | * On entry, TRANS specifies the operation to be performed as |
44 | 1 | equemene | * follows: |
45 | 1 | equemene | * |
46 | 1 | equemene | * TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + |
47 | 1 | equemene | * beta*C. |
48 | 1 | equemene | * |
49 | 1 | equemene | * TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + |
50 | 1 | equemene | * beta*C. |
51 | 1 | equemene | * |
52 | 1 | equemene | * TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + |
53 | 1 | equemene | * beta*C. |
54 | 1 | equemene | * |
55 | 1 | equemene | * Unchanged on exit. |
56 | 1 | equemene | * |
57 | 1 | equemene | * N - INTEGER. |
58 | 1 | equemene | * On entry, N specifies the order of the matrix C. N must be |
59 | 1 | equemene | * at least zero. |
60 | 1 | equemene | * Unchanged on exit. |
61 | 1 | equemene | * |
62 | 1 | equemene | * K - INTEGER. |
63 | 1 | equemene | * On entry with TRANS = 'N' or 'n', K specifies the number |
64 | 1 | equemene | * of columns of the matrices A and B, and on entry with |
65 | 1 | equemene | * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number |
66 | 1 | equemene | * of rows of the matrices A and B. K must be at least zero. |
67 | 1 | equemene | * Unchanged on exit. |
68 | 1 | equemene | * |
69 | 1 | equemene | * ALPHA - DOUBLE PRECISION. |
70 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
71 | 1 | equemene | * Unchanged on exit. |
72 | 1 | equemene | * |
73 | 1 | equemene | * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is |
74 | 1 | equemene | * k when TRANS = 'N' or 'n', and is n otherwise. |
75 | 1 | equemene | * Before entry with TRANS = 'N' or 'n', the leading n by k |
76 | 1 | equemene | * part of the array A must contain the matrix A, otherwise |
77 | 1 | equemene | * the leading k by n part of the array A must contain the |
78 | 1 | equemene | * matrix A. |
79 | 1 | equemene | * Unchanged on exit. |
80 | 1 | equemene | * |
81 | 1 | equemene | * LDA - INTEGER. |
82 | 1 | equemene | * On entry, LDA specifies the first dimension of A as declared |
83 | 1 | equemene | * in the calling (sub) program. When TRANS = 'N' or 'n' |
84 | 1 | equemene | * then LDA must be at least max( 1, n ), otherwise LDA must |
85 | 1 | equemene | * be at least max( 1, k ). |
86 | 1 | equemene | * Unchanged on exit. |
87 | 1 | equemene | * |
88 | 1 | equemene | * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is |
89 | 1 | equemene | * k when TRANS = 'N' or 'n', and is n otherwise. |
90 | 1 | equemene | * Before entry with TRANS = 'N' or 'n', the leading n by k |
91 | 1 | equemene | * part of the array B must contain the matrix B, otherwise |
92 | 1 | equemene | * the leading k by n part of the array B must contain the |
93 | 1 | equemene | * matrix B. |
94 | 1 | equemene | * Unchanged on exit. |
95 | 1 | equemene | * |
96 | 1 | equemene | * LDB - INTEGER. |
97 | 1 | equemene | * On entry, LDB specifies the first dimension of B as declared |
98 | 1 | equemene | * in the calling (sub) program. When TRANS = 'N' or 'n' |
99 | 1 | equemene | * then LDB must be at least max( 1, n ), otherwise LDB must |
100 | 1 | equemene | * be at least max( 1, k ). |
101 | 1 | equemene | * Unchanged on exit. |
102 | 1 | equemene | * |
103 | 1 | equemene | * BETA - DOUBLE PRECISION. |
104 | 1 | equemene | * On entry, BETA specifies the scalar beta. |
105 | 1 | equemene | * Unchanged on exit. |
106 | 1 | equemene | * |
107 | 1 | equemene | * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). |
108 | 1 | equemene | * Before entry with UPLO = 'U' or 'u', the leading n by n |
109 | 1 | equemene | * upper triangular part of the array C must contain the upper |
110 | 1 | equemene | * triangular part of the symmetric matrix and the strictly |
111 | 1 | equemene | * lower triangular part of C is not referenced. On exit, the |
112 | 1 | equemene | * upper triangular part of the array C is overwritten by the |
113 | 1 | equemene | * upper triangular part of the updated matrix. |
114 | 1 | equemene | * Before entry with UPLO = 'L' or 'l', the leading n by n |
115 | 1 | equemene | * lower triangular part of the array C must contain the lower |
116 | 1 | equemene | * triangular part of the symmetric matrix and the strictly |
117 | 1 | equemene | * upper triangular part of C is not referenced. On exit, the |
118 | 1 | equemene | * lower triangular part of the array C is overwritten by the |
119 | 1 | equemene | * lower triangular part of the updated matrix. |
120 | 1 | equemene | * |
121 | 1 | equemene | * LDC - INTEGER. |
122 | 1 | equemene | * On entry, LDC specifies the first dimension of C as declared |
123 | 1 | equemene | * in the calling (sub) program. LDC must be at least |
124 | 1 | equemene | * max( 1, n ). |
125 | 1 | equemene | * Unchanged on exit. |
126 | 1 | equemene | * |
127 | 1 | equemene | * |
128 | 1 | equemene | * Level 3 Blas routine. |
129 | 1 | equemene | * |
130 | 1 | equemene | * |
131 | 1 | equemene | * -- Written on 8-February-1989. |
132 | 1 | equemene | * Jack Dongarra, Argonne National Laboratory. |
133 | 1 | equemene | * Iain Duff, AERE Harwell. |
134 | 1 | equemene | * Jeremy Du Croz, Numerical Algorithms Group Ltd. |
135 | 1 | equemene | * Sven Hammarling, Numerical Algorithms Group Ltd. |
136 | 1 | equemene | * |
137 | 1 | equemene | * |
138 | 1 | equemene | * .. External Functions .. |
139 | 1 | equemene | LOGICAL LSAME |
140 | 1 | equemene | EXTERNAL LSAME |
141 | 1 | equemene | * .. |
142 | 1 | equemene | * .. External Subroutines .. |
143 | 1 | equemene | EXTERNAL XERBLA |
144 | 1 | equemene | * .. |
145 | 1 | equemene | * .. Intrinsic Functions .. |
146 | 1 | equemene | INTRINSIC MAX |
147 | 1 | equemene | * .. |
148 | 1 | equemene | * .. Local Scalars .. |
149 | 1 | equemene | DOUBLE PRECISION TEMP1,TEMP2 |
150 | 1 | equemene | INTEGER I,INFO,J,L,NROWA |
151 | 1 | equemene | LOGICAL UPPER |
152 | 1 | equemene | * .. |
153 | 1 | equemene | * .. Parameters .. |
154 | 1 | equemene | DOUBLE PRECISION ONE,ZERO |
155 | 1 | equemene | PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) |
156 | 1 | equemene | * .. |
157 | 1 | equemene | * |
158 | 1 | equemene | * Test the input parameters. |
159 | 1 | equemene | * |
160 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
161 | 1 | equemene | NROWA = N |
162 | 1 | equemene | ELSE |
163 | 1 | equemene | NROWA = K |
164 | 1 | equemene | END IF |
165 | 1 | equemene | UPPER = LSAME(UPLO,'U') |
166 | 1 | equemene | * |
167 | 1 | equemene | INFO = 0 |
168 | 1 | equemene | IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
169 | 1 | equemene | INFO = 1 |
170 | 1 | equemene | ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
171 | 1 | equemene | + (.NOT.LSAME(TRANS,'T')) .AND. |
172 | 1 | equemene | + (.NOT.LSAME(TRANS,'C'))) THEN |
173 | 1 | equemene | INFO = 2 |
174 | 1 | equemene | ELSE IF (N.LT.0) THEN |
175 | 1 | equemene | INFO = 3 |
176 | 1 | equemene | ELSE IF (K.LT.0) THEN |
177 | 1 | equemene | INFO = 4 |
178 | 1 | equemene | ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
179 | 1 | equemene | INFO = 7 |
180 | 1 | equemene | ELSE IF (LDB.LT.MAX(1,NROWA)) THEN |
181 | 1 | equemene | INFO = 9 |
182 | 1 | equemene | ELSE IF (LDC.LT.MAX(1,N)) THEN |
183 | 1 | equemene | INFO = 12 |
184 | 1 | equemene | END IF |
185 | 1 | equemene | IF (INFO.NE.0) THEN |
186 | 1 | equemene | CALL XERBLA('DSYR2K',INFO) |
187 | 1 | equemene | RETURN |
188 | 1 | equemene | END IF |
189 | 1 | equemene | * |
190 | 1 | equemene | * Quick return if possible. |
191 | 1 | equemene | * |
192 | 1 | equemene | IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
193 | 1 | equemene | + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
194 | 1 | equemene | * |
195 | 1 | equemene | * And when alpha.eq.zero. |
196 | 1 | equemene | * |
197 | 1 | equemene | IF (ALPHA.EQ.ZERO) THEN |
198 | 1 | equemene | IF (UPPER) THEN |
199 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
200 | 1 | equemene | DO 20 J = 1,N |
201 | 1 | equemene | DO 10 I = 1,J |
202 | 1 | equemene | C(I,J) = ZERO |
203 | 1 | equemene | 10 CONTINUE |
204 | 1 | equemene | 20 CONTINUE |
205 | 1 | equemene | ELSE |
206 | 1 | equemene | DO 40 J = 1,N |
207 | 1 | equemene | DO 30 I = 1,J |
208 | 1 | equemene | C(I,J) = BETA*C(I,J) |
209 | 1 | equemene | 30 CONTINUE |
210 | 1 | equemene | 40 CONTINUE |
211 | 1 | equemene | END IF |
212 | 1 | equemene | ELSE |
213 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
214 | 1 | equemene | DO 60 J = 1,N |
215 | 1 | equemene | DO 50 I = J,N |
216 | 1 | equemene | C(I,J) = ZERO |
217 | 1 | equemene | 50 CONTINUE |
218 | 1 | equemene | 60 CONTINUE |
219 | 1 | equemene | ELSE |
220 | 1 | equemene | DO 80 J = 1,N |
221 | 1 | equemene | DO 70 I = J,N |
222 | 1 | equemene | C(I,J) = BETA*C(I,J) |
223 | 1 | equemene | 70 CONTINUE |
224 | 1 | equemene | 80 CONTINUE |
225 | 1 | equemene | END IF |
226 | 1 | equemene | END IF |
227 | 1 | equemene | RETURN |
228 | 1 | equemene | END IF |
229 | 1 | equemene | * |
230 | 1 | equemene | * Start the operations. |
231 | 1 | equemene | * |
232 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
233 | 1 | equemene | * |
234 | 1 | equemene | * Form C := alpha*A*B' + alpha*B*A' + C. |
235 | 1 | equemene | * |
236 | 1 | equemene | IF (UPPER) THEN |
237 | 1 | equemene | DO 130 J = 1,N |
238 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
239 | 1 | equemene | DO 90 I = 1,J |
240 | 1 | equemene | C(I,J) = ZERO |
241 | 1 | equemene | 90 CONTINUE |
242 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
243 | 1 | equemene | DO 100 I = 1,J |
244 | 1 | equemene | C(I,J) = BETA*C(I,J) |
245 | 1 | equemene | 100 CONTINUE |
246 | 1 | equemene | END IF |
247 | 1 | equemene | DO 120 L = 1,K |
248 | 1 | equemene | IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
249 | 1 | equemene | TEMP1 = ALPHA*B(J,L) |
250 | 1 | equemene | TEMP2 = ALPHA*A(J,L) |
251 | 1 | equemene | DO 110 I = 1,J |
252 | 1 | equemene | C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
253 | 1 | equemene | + B(I,L)*TEMP2 |
254 | 1 | equemene | 110 CONTINUE |
255 | 1 | equemene | END IF |
256 | 1 | equemene | 120 CONTINUE |
257 | 1 | equemene | 130 CONTINUE |
258 | 1 | equemene | ELSE |
259 | 1 | equemene | DO 180 J = 1,N |
260 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
261 | 1 | equemene | DO 140 I = J,N |
262 | 1 | equemene | C(I,J) = ZERO |
263 | 1 | equemene | 140 CONTINUE |
264 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
265 | 1 | equemene | DO 150 I = J,N |
266 | 1 | equemene | C(I,J) = BETA*C(I,J) |
267 | 1 | equemene | 150 CONTINUE |
268 | 1 | equemene | END IF |
269 | 1 | equemene | DO 170 L = 1,K |
270 | 1 | equemene | IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN |
271 | 1 | equemene | TEMP1 = ALPHA*B(J,L) |
272 | 1 | equemene | TEMP2 = ALPHA*A(J,L) |
273 | 1 | equemene | DO 160 I = J,N |
274 | 1 | equemene | C(I,J) = C(I,J) + A(I,L)*TEMP1 + |
275 | 1 | equemene | + B(I,L)*TEMP2 |
276 | 1 | equemene | 160 CONTINUE |
277 | 1 | equemene | END IF |
278 | 1 | equemene | 170 CONTINUE |
279 | 1 | equemene | 180 CONTINUE |
280 | 1 | equemene | END IF |
281 | 1 | equemene | ELSE |
282 | 1 | equemene | * |
283 | 1 | equemene | * Form C := alpha*A'*B + alpha*B'*A + C. |
284 | 1 | equemene | * |
285 | 1 | equemene | IF (UPPER) THEN |
286 | 1 | equemene | DO 210 J = 1,N |
287 | 1 | equemene | DO 200 I = 1,J |
288 | 1 | equemene | TEMP1 = ZERO |
289 | 1 | equemene | TEMP2 = ZERO |
290 | 1 | equemene | DO 190 L = 1,K |
291 | 1 | equemene | TEMP1 = TEMP1 + A(L,I)*B(L,J) |
292 | 1 | equemene | TEMP2 = TEMP2 + B(L,I)*A(L,J) |
293 | 1 | equemene | 190 CONTINUE |
294 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
295 | 1 | equemene | C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 |
296 | 1 | equemene | ELSE |
297 | 1 | equemene | C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
298 | 1 | equemene | + ALPHA*TEMP2 |
299 | 1 | equemene | END IF |
300 | 1 | equemene | 200 CONTINUE |
301 | 1 | equemene | 210 CONTINUE |
302 | 1 | equemene | ELSE |
303 | 1 | equemene | DO 240 J = 1,N |
304 | 1 | equemene | DO 230 I = J,N |
305 | 1 | equemene | TEMP1 = ZERO |
306 | 1 | equemene | TEMP2 = ZERO |
307 | 1 | equemene | DO 220 L = 1,K |
308 | 1 | equemene | TEMP1 = TEMP1 + A(L,I)*B(L,J) |
309 | 1 | equemene | TEMP2 = TEMP2 + B(L,I)*A(L,J) |
310 | 1 | equemene | 220 CONTINUE |
311 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
312 | 1 | equemene | C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 |
313 | 1 | equemene | ELSE |
314 | 1 | equemene | C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + |
315 | 1 | equemene | + ALPHA*TEMP2 |
316 | 1 | equemene | END IF |
317 | 1 | equemene | 230 CONTINUE |
318 | 1 | equemene | 240 CONTINUE |
319 | 1 | equemene | END IF |
320 | 1 | equemene | END IF |
321 | 1 | equemene | * |
322 | 1 | equemene | RETURN |
323 | 1 | equemene | * |
324 | 1 | equemene | * End of DSYR2K. |
325 | 1 | equemene | * |
326 | 1 | equemene | END |