Statistiques
| Révision :

root / src / blas / dgbmv.f @ 8

Historique | Voir | Annoter | Télécharger (8,81 ko)

1 1 equemene
      SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      DOUBLE PRECISION ALPHA,BETA
4 1 equemene
      INTEGER INCX,INCY,KL,KU,LDA,M,N
5 1 equemene
      CHARACTER TRANS
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  DGBMV  performs one of the matrix-vector operations
15 1 equemene
*
16 1 equemene
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
17 1 equemene
*
18 1 equemene
*  where alpha and beta are scalars, x and y are vectors and A is an
19 1 equemene
*  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  TRANS  - CHARACTER*1.
25 1 equemene
*           On entry, TRANS specifies the operation to be performed as
26 1 equemene
*           follows:
27 1 equemene
*
28 1 equemene
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
29 1 equemene
*
30 1 equemene
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
31 1 equemene
*
32 1 equemene
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
33 1 equemene
*
34 1 equemene
*           Unchanged on exit.
35 1 equemene
*
36 1 equemene
*  M      - INTEGER.
37 1 equemene
*           On entry, M specifies the number of rows of the matrix A.
38 1 equemene
*           M must be at least zero.
39 1 equemene
*           Unchanged on exit.
40 1 equemene
*
41 1 equemene
*  N      - INTEGER.
42 1 equemene
*           On entry, N specifies the number of columns of the matrix A.
43 1 equemene
*           N must be at least zero.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  KL     - INTEGER.
47 1 equemene
*           On entry, KL specifies the number of sub-diagonals of the
48 1 equemene
*           matrix A. KL must satisfy  0 .le. KL.
49 1 equemene
*           Unchanged on exit.
50 1 equemene
*
51 1 equemene
*  KU     - INTEGER.
52 1 equemene
*           On entry, KU specifies the number of super-diagonals of the
53 1 equemene
*           matrix A. KU must satisfy  0 .le. KU.
54 1 equemene
*           Unchanged on exit.
55 1 equemene
*
56 1 equemene
*  ALPHA  - DOUBLE PRECISION.
57 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
58 1 equemene
*           Unchanged on exit.
59 1 equemene
*
60 1 equemene
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
61 1 equemene
*           Before entry, the leading ( kl + ku + 1 ) by n part of the
62 1 equemene
*           array A must contain the matrix of coefficients, supplied
63 1 equemene
*           column by column, with the leading diagonal of the matrix in
64 1 equemene
*           row ( ku + 1 ) of the array, the first super-diagonal
65 1 equemene
*           starting at position 2 in row ku, the first sub-diagonal
66 1 equemene
*           starting at position 1 in row ( ku + 2 ), and so on.
67 1 equemene
*           Elements in the array A that do not correspond to elements
68 1 equemene
*           in the band matrix (such as the top left ku by ku triangle)
69 1 equemene
*           are not referenced.
70 1 equemene
*           The following program segment will transfer a band matrix
71 1 equemene
*           from conventional full matrix storage to band storage:
72 1 equemene
*
73 1 equemene
*                 DO 20, J = 1, N
74 1 equemene
*                    K = KU + 1 - J
75 1 equemene
*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
76 1 equemene
*                       A( K + I, J ) = matrix( I, J )
77 1 equemene
*              10    CONTINUE
78 1 equemene
*              20 CONTINUE
79 1 equemene
*
80 1 equemene
*           Unchanged on exit.
81 1 equemene
*
82 1 equemene
*  LDA    - INTEGER.
83 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
84 1 equemene
*           in the calling (sub) program. LDA must be at least
85 1 equemene
*           ( kl + ku + 1 ).
86 1 equemene
*           Unchanged on exit.
87 1 equemene
*
88 1 equemene
*  X      - DOUBLE PRECISION array of DIMENSION at least
89 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
90 1 equemene
*           and at least
91 1 equemene
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
92 1 equemene
*           Before entry, the incremented array X must contain the
93 1 equemene
*           vector x.
94 1 equemene
*           Unchanged on exit.
95 1 equemene
*
96 1 equemene
*  INCX   - INTEGER.
97 1 equemene
*           On entry, INCX specifies the increment for the elements of
98 1 equemene
*           X. INCX must not be zero.
99 1 equemene
*           Unchanged on exit.
100 1 equemene
*
101 1 equemene
*  BETA   - DOUBLE PRECISION.
102 1 equemene
*           On entry, BETA specifies the scalar beta. When BETA is
103 1 equemene
*           supplied as zero then Y need not be set on input.
104 1 equemene
*           Unchanged on exit.
105 1 equemene
*
106 1 equemene
*  Y      - DOUBLE PRECISION array of DIMENSION at least
107 1 equemene
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
108 1 equemene
*           and at least
109 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
110 1 equemene
*           Before entry, the incremented array Y must contain the
111 1 equemene
*           vector y. On exit, Y is overwritten by the updated vector y.
112 1 equemene
*
113 1 equemene
*  INCY   - INTEGER.
114 1 equemene
*           On entry, INCY specifies the increment for the elements of
115 1 equemene
*           Y. INCY must not be zero.
116 1 equemene
*           Unchanged on exit.
117 1 equemene
*
118 1 equemene
*
119 1 equemene
*  Level 2 Blas routine.
120 1 equemene
*
121 1 equemene
*  -- Written on 22-October-1986.
122 1 equemene
*     Jack Dongarra, Argonne National Lab.
123 1 equemene
*     Jeremy Du Croz, Nag Central Office.
124 1 equemene
*     Sven Hammarling, Nag Central Office.
125 1 equemene
*     Richard Hanson, Sandia National Labs.
126 1 equemene
*
127 1 equemene
*     .. Parameters ..
128 1 equemene
      DOUBLE PRECISION ONE,ZERO
129 1 equemene
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
130 1 equemene
*     ..
131 1 equemene
*     .. Local Scalars ..
132 1 equemene
      DOUBLE PRECISION TEMP
133 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
134 1 equemene
*     ..
135 1 equemene
*     .. External Functions ..
136 1 equemene
      LOGICAL LSAME
137 1 equemene
      EXTERNAL LSAME
138 1 equemene
*     ..
139 1 equemene
*     .. External Subroutines ..
140 1 equemene
      EXTERNAL XERBLA
141 1 equemene
*     ..
142 1 equemene
*     .. Intrinsic Functions ..
143 1 equemene
      INTRINSIC MAX,MIN
144 1 equemene
*     ..
145 1 equemene
*
146 1 equemene
*     Test the input parameters.
147 1 equemene
*
148 1 equemene
      INFO = 0
149 1 equemene
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
150 1 equemene
     +    .NOT.LSAME(TRANS,'C')) THEN
151 1 equemene
          INFO = 1
152 1 equemene
      ELSE IF (M.LT.0) THEN
153 1 equemene
          INFO = 2
154 1 equemene
      ELSE IF (N.LT.0) THEN
155 1 equemene
          INFO = 3
156 1 equemene
      ELSE IF (KL.LT.0) THEN
157 1 equemene
          INFO = 4
158 1 equemene
      ELSE IF (KU.LT.0) THEN
159 1 equemene
          INFO = 5
160 1 equemene
      ELSE IF (LDA.LT. (KL+KU+1)) THEN
161 1 equemene
          INFO = 8
162 1 equemene
      ELSE IF (INCX.EQ.0) THEN
163 1 equemene
          INFO = 10
164 1 equemene
      ELSE IF (INCY.EQ.0) THEN
165 1 equemene
          INFO = 13
166 1 equemene
      END IF
167 1 equemene
      IF (INFO.NE.0) THEN
168 1 equemene
          CALL XERBLA('DGBMV ',INFO)
169 1 equemene
          RETURN
170 1 equemene
      END IF
171 1 equemene
*
172 1 equemene
*     Quick return if possible.
173 1 equemene
*
174 1 equemene
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
175 1 equemene
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
176 1 equemene
*
177 1 equemene
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
178 1 equemene
*     up the start points in  X  and  Y.
179 1 equemene
*
180 1 equemene
      IF (LSAME(TRANS,'N')) THEN
181 1 equemene
          LENX = N
182 1 equemene
          LENY = M
183 1 equemene
      ELSE
184 1 equemene
          LENX = M
185 1 equemene
          LENY = N
186 1 equemene
      END IF
187 1 equemene
      IF (INCX.GT.0) THEN
188 1 equemene
          KX = 1
189 1 equemene
      ELSE
190 1 equemene
          KX = 1 - (LENX-1)*INCX
191 1 equemene
      END IF
192 1 equemene
      IF (INCY.GT.0) THEN
193 1 equemene
          KY = 1
194 1 equemene
      ELSE
195 1 equemene
          KY = 1 - (LENY-1)*INCY
196 1 equemene
      END IF
197 1 equemene
*
198 1 equemene
*     Start the operations. In this version the elements of A are
199 1 equemene
*     accessed sequentially with one pass through the band part of A.
200 1 equemene
*
201 1 equemene
*     First form  y := beta*y.
202 1 equemene
*
203 1 equemene
      IF (BETA.NE.ONE) THEN
204 1 equemene
          IF (INCY.EQ.1) THEN
205 1 equemene
              IF (BETA.EQ.ZERO) THEN
206 1 equemene
                  DO 10 I = 1,LENY
207 1 equemene
                      Y(I) = ZERO
208 1 equemene
   10             CONTINUE
209 1 equemene
              ELSE
210 1 equemene
                  DO 20 I = 1,LENY
211 1 equemene
                      Y(I) = BETA*Y(I)
212 1 equemene
   20             CONTINUE
213 1 equemene
              END IF
214 1 equemene
          ELSE
215 1 equemene
              IY = KY
216 1 equemene
              IF (BETA.EQ.ZERO) THEN
217 1 equemene
                  DO 30 I = 1,LENY
218 1 equemene
                      Y(IY) = ZERO
219 1 equemene
                      IY = IY + INCY
220 1 equemene
   30             CONTINUE
221 1 equemene
              ELSE
222 1 equemene
                  DO 40 I = 1,LENY
223 1 equemene
                      Y(IY) = BETA*Y(IY)
224 1 equemene
                      IY = IY + INCY
225 1 equemene
   40             CONTINUE
226 1 equemene
              END IF
227 1 equemene
          END IF
228 1 equemene
      END IF
229 1 equemene
      IF (ALPHA.EQ.ZERO) RETURN
230 1 equemene
      KUP1 = KU + 1
231 1 equemene
      IF (LSAME(TRANS,'N')) THEN
232 1 equemene
*
233 1 equemene
*        Form  y := alpha*A*x + y.
234 1 equemene
*
235 1 equemene
          JX = KX
236 1 equemene
          IF (INCY.EQ.1) THEN
237 1 equemene
              DO 60 J = 1,N
238 1 equemene
                  IF (X(JX).NE.ZERO) THEN
239 1 equemene
                      TEMP = ALPHA*X(JX)
240 1 equemene
                      K = KUP1 - J
241 1 equemene
                      DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
242 1 equemene
                          Y(I) = Y(I) + TEMP*A(K+I,J)
243 1 equemene
   50                 CONTINUE
244 1 equemene
                  END IF
245 1 equemene
                  JX = JX + INCX
246 1 equemene
   60         CONTINUE
247 1 equemene
          ELSE
248 1 equemene
              DO 80 J = 1,N
249 1 equemene
                  IF (X(JX).NE.ZERO) THEN
250 1 equemene
                      TEMP = ALPHA*X(JX)
251 1 equemene
                      IY = KY
252 1 equemene
                      K = KUP1 - J
253 1 equemene
                      DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
254 1 equemene
                          Y(IY) = Y(IY) + TEMP*A(K+I,J)
255 1 equemene
                          IY = IY + INCY
256 1 equemene
   70                 CONTINUE
257 1 equemene
                  END IF
258 1 equemene
                  JX = JX + INCX
259 1 equemene
                  IF (J.GT.KU) KY = KY + INCY
260 1 equemene
   80         CONTINUE
261 1 equemene
          END IF
262 1 equemene
      ELSE
263 1 equemene
*
264 1 equemene
*        Form  y := alpha*A'*x + y.
265 1 equemene
*
266 1 equemene
          JY = KY
267 1 equemene
          IF (INCX.EQ.1) THEN
268 1 equemene
              DO 100 J = 1,N
269 1 equemene
                  TEMP = ZERO
270 1 equemene
                  K = KUP1 - J
271 1 equemene
                  DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
272 1 equemene
                      TEMP = TEMP + A(K+I,J)*X(I)
273 1 equemene
   90             CONTINUE
274 1 equemene
                  Y(JY) = Y(JY) + ALPHA*TEMP
275 1 equemene
                  JY = JY + INCY
276 1 equemene
  100         CONTINUE
277 1 equemene
          ELSE
278 1 equemene
              DO 120 J = 1,N
279 1 equemene
                  TEMP = ZERO
280 1 equemene
                  IX = KX
281 1 equemene
                  K = KUP1 - J
282 1 equemene
                  DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
283 1 equemene
                      TEMP = TEMP + A(K+I,J)*X(IX)
284 1 equemene
                      IX = IX + INCX
285 1 equemene
  110             CONTINUE
286 1 equemene
                  Y(JY) = Y(JY) + ALPHA*TEMP
287 1 equemene
                  JY = JY + INCY
288 1 equemene
                  IF (J.GT.KU) KX = KX + INCX
289 1 equemene
  120         CONTINUE
290 1 equemene
          END IF
291 1 equemene
      END IF
292 1 equemene
*
293 1 equemene
      RETURN
294 1 equemene
*
295 1 equemene
*     End of DGBMV .
296 1 equemene
*
297 1 equemene
      END