root / src / blas / csyrk.f @ 8
Historique | Voir | Annoter | Télécharger (8,94 ko)
1 | 1 | equemene | SUBROUTINE CSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | COMPLEX ALPHA,BETA |
4 | 1 | equemene | INTEGER K,LDA,LDC,N |
5 | 1 | equemene | CHARACTER TRANS,UPLO |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | COMPLEX A(LDA,*),C(LDC,*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * CSYRK performs one of the symmetric rank k operations |
15 | 1 | equemene | * |
16 | 1 | equemene | * C := alpha*A*A' + beta*C, |
17 | 1 | equemene | * |
18 | 1 | equemene | * or |
19 | 1 | equemene | * |
20 | 1 | equemene | * C := alpha*A'*A + beta*C, |
21 | 1 | equemene | * |
22 | 1 | equemene | * where alpha and beta are scalars, C is an n by n symmetric matrix |
23 | 1 | equemene | * and A is an n by k matrix in the first case and a k by n matrix |
24 | 1 | equemene | * in the second case. |
25 | 1 | equemene | * |
26 | 1 | equemene | * Arguments |
27 | 1 | equemene | * ========== |
28 | 1 | equemene | * |
29 | 1 | equemene | * UPLO - CHARACTER*1. |
30 | 1 | equemene | * On entry, UPLO specifies whether the upper or lower |
31 | 1 | equemene | * triangular part of the array C is to be referenced as |
32 | 1 | equemene | * follows: |
33 | 1 | equemene | * |
34 | 1 | equemene | * UPLO = 'U' or 'u' Only the upper triangular part of C |
35 | 1 | equemene | * is to be referenced. |
36 | 1 | equemene | * |
37 | 1 | equemene | * UPLO = 'L' or 'l' Only the lower triangular part of C |
38 | 1 | equemene | * is to be referenced. |
39 | 1 | equemene | * |
40 | 1 | equemene | * Unchanged on exit. |
41 | 1 | equemene | * |
42 | 1 | equemene | * TRANS - CHARACTER*1. |
43 | 1 | equemene | * On entry, TRANS specifies the operation to be performed as |
44 | 1 | equemene | * follows: |
45 | 1 | equemene | * |
46 | 1 | equemene | * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. |
47 | 1 | equemene | * |
48 | 1 | equemene | * TRANS = 'T' or 't' C := alpha*A'*A + beta*C. |
49 | 1 | equemene | * |
50 | 1 | equemene | * Unchanged on exit. |
51 | 1 | equemene | * |
52 | 1 | equemene | * N - INTEGER. |
53 | 1 | equemene | * On entry, N specifies the order of the matrix C. N must be |
54 | 1 | equemene | * at least zero. |
55 | 1 | equemene | * Unchanged on exit. |
56 | 1 | equemene | * |
57 | 1 | equemene | * K - INTEGER. |
58 | 1 | equemene | * On entry with TRANS = 'N' or 'n', K specifies the number |
59 | 1 | equemene | * of columns of the matrix A, and on entry with |
60 | 1 | equemene | * TRANS = 'T' or 't', K specifies the number of rows of the |
61 | 1 | equemene | * matrix A. K must be at least zero. |
62 | 1 | equemene | * Unchanged on exit. |
63 | 1 | equemene | * |
64 | 1 | equemene | * ALPHA - COMPLEX . |
65 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
66 | 1 | equemene | * Unchanged on exit. |
67 | 1 | equemene | * |
68 | 1 | equemene | * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is |
69 | 1 | equemene | * k when TRANS = 'N' or 'n', and is n otherwise. |
70 | 1 | equemene | * Before entry with TRANS = 'N' or 'n', the leading n by k |
71 | 1 | equemene | * part of the array A must contain the matrix A, otherwise |
72 | 1 | equemene | * the leading k by n part of the array A must contain the |
73 | 1 | equemene | * matrix A. |
74 | 1 | equemene | * Unchanged on exit. |
75 | 1 | equemene | * |
76 | 1 | equemene | * LDA - INTEGER. |
77 | 1 | equemene | * On entry, LDA specifies the first dimension of A as declared |
78 | 1 | equemene | * in the calling (sub) program. When TRANS = 'N' or 'n' |
79 | 1 | equemene | * then LDA must be at least max( 1, n ), otherwise LDA must |
80 | 1 | equemene | * be at least max( 1, k ). |
81 | 1 | equemene | * Unchanged on exit. |
82 | 1 | equemene | * |
83 | 1 | equemene | * BETA - COMPLEX . |
84 | 1 | equemene | * On entry, BETA specifies the scalar beta. |
85 | 1 | equemene | * Unchanged on exit. |
86 | 1 | equemene | * |
87 | 1 | equemene | * C - COMPLEX array of DIMENSION ( LDC, n ). |
88 | 1 | equemene | * Before entry with UPLO = 'U' or 'u', the leading n by n |
89 | 1 | equemene | * upper triangular part of the array C must contain the upper |
90 | 1 | equemene | * triangular part of the symmetric matrix and the strictly |
91 | 1 | equemene | * lower triangular part of C is not referenced. On exit, the |
92 | 1 | equemene | * upper triangular part of the array C is overwritten by the |
93 | 1 | equemene | * upper triangular part of the updated matrix. |
94 | 1 | equemene | * Before entry with UPLO = 'L' or 'l', the leading n by n |
95 | 1 | equemene | * lower triangular part of the array C must contain the lower |
96 | 1 | equemene | * triangular part of the symmetric matrix and the strictly |
97 | 1 | equemene | * upper triangular part of C is not referenced. On exit, the |
98 | 1 | equemene | * lower triangular part of the array C is overwritten by the |
99 | 1 | equemene | * lower triangular part of the updated matrix. |
100 | 1 | equemene | * |
101 | 1 | equemene | * LDC - INTEGER. |
102 | 1 | equemene | * On entry, LDC specifies the first dimension of C as declared |
103 | 1 | equemene | * in the calling (sub) program. LDC must be at least |
104 | 1 | equemene | * max( 1, n ). |
105 | 1 | equemene | * Unchanged on exit. |
106 | 1 | equemene | * |
107 | 1 | equemene | * |
108 | 1 | equemene | * Level 3 Blas routine. |
109 | 1 | equemene | * |
110 | 1 | equemene | * -- Written on 8-February-1989. |
111 | 1 | equemene | * Jack Dongarra, Argonne National Laboratory. |
112 | 1 | equemene | * Iain Duff, AERE Harwell. |
113 | 1 | equemene | * Jeremy Du Croz, Numerical Algorithms Group Ltd. |
114 | 1 | equemene | * Sven Hammarling, Numerical Algorithms Group Ltd. |
115 | 1 | equemene | * |
116 | 1 | equemene | * |
117 | 1 | equemene | * .. External Functions .. |
118 | 1 | equemene | LOGICAL LSAME |
119 | 1 | equemene | EXTERNAL LSAME |
120 | 1 | equemene | * .. |
121 | 1 | equemene | * .. External Subroutines .. |
122 | 1 | equemene | EXTERNAL XERBLA |
123 | 1 | equemene | * .. |
124 | 1 | equemene | * .. Intrinsic Functions .. |
125 | 1 | equemene | INTRINSIC MAX |
126 | 1 | equemene | * .. |
127 | 1 | equemene | * .. Local Scalars .. |
128 | 1 | equemene | COMPLEX TEMP |
129 | 1 | equemene | INTEGER I,INFO,J,L,NROWA |
130 | 1 | equemene | LOGICAL UPPER |
131 | 1 | equemene | * .. |
132 | 1 | equemene | * .. Parameters .. |
133 | 1 | equemene | COMPLEX ONE |
134 | 1 | equemene | PARAMETER (ONE= (1.0E+0,0.0E+0)) |
135 | 1 | equemene | COMPLEX ZERO |
136 | 1 | equemene | PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
137 | 1 | equemene | * .. |
138 | 1 | equemene | * |
139 | 1 | equemene | * Test the input parameters. |
140 | 1 | equemene | * |
141 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
142 | 1 | equemene | NROWA = N |
143 | 1 | equemene | ELSE |
144 | 1 | equemene | NROWA = K |
145 | 1 | equemene | END IF |
146 | 1 | equemene | UPPER = LSAME(UPLO,'U') |
147 | 1 | equemene | * |
148 | 1 | equemene | INFO = 0 |
149 | 1 | equemene | IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN |
150 | 1 | equemene | INFO = 1 |
151 | 1 | equemene | ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. |
152 | 1 | equemene | + (.NOT.LSAME(TRANS,'T'))) THEN |
153 | 1 | equemene | INFO = 2 |
154 | 1 | equemene | ELSE IF (N.LT.0) THEN |
155 | 1 | equemene | INFO = 3 |
156 | 1 | equemene | ELSE IF (K.LT.0) THEN |
157 | 1 | equemene | INFO = 4 |
158 | 1 | equemene | ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
159 | 1 | equemene | INFO = 7 |
160 | 1 | equemene | ELSE IF (LDC.LT.MAX(1,N)) THEN |
161 | 1 | equemene | INFO = 10 |
162 | 1 | equemene | END IF |
163 | 1 | equemene | IF (INFO.NE.0) THEN |
164 | 1 | equemene | CALL XERBLA('CSYRK ',INFO) |
165 | 1 | equemene | RETURN |
166 | 1 | equemene | END IF |
167 | 1 | equemene | * |
168 | 1 | equemene | * Quick return if possible. |
169 | 1 | equemene | * |
170 | 1 | equemene | IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. |
171 | 1 | equemene | + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
172 | 1 | equemene | * |
173 | 1 | equemene | * And when alpha.eq.zero. |
174 | 1 | equemene | * |
175 | 1 | equemene | IF (ALPHA.EQ.ZERO) THEN |
176 | 1 | equemene | IF (UPPER) THEN |
177 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
178 | 1 | equemene | DO 20 J = 1,N |
179 | 1 | equemene | DO 10 I = 1,J |
180 | 1 | equemene | C(I,J) = ZERO |
181 | 1 | equemene | 10 CONTINUE |
182 | 1 | equemene | 20 CONTINUE |
183 | 1 | equemene | ELSE |
184 | 1 | equemene | DO 40 J = 1,N |
185 | 1 | equemene | DO 30 I = 1,J |
186 | 1 | equemene | C(I,J) = BETA*C(I,J) |
187 | 1 | equemene | 30 CONTINUE |
188 | 1 | equemene | 40 CONTINUE |
189 | 1 | equemene | END IF |
190 | 1 | equemene | ELSE |
191 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
192 | 1 | equemene | DO 60 J = 1,N |
193 | 1 | equemene | DO 50 I = J,N |
194 | 1 | equemene | C(I,J) = ZERO |
195 | 1 | equemene | 50 CONTINUE |
196 | 1 | equemene | 60 CONTINUE |
197 | 1 | equemene | ELSE |
198 | 1 | equemene | DO 80 J = 1,N |
199 | 1 | equemene | DO 70 I = J,N |
200 | 1 | equemene | C(I,J) = BETA*C(I,J) |
201 | 1 | equemene | 70 CONTINUE |
202 | 1 | equemene | 80 CONTINUE |
203 | 1 | equemene | END IF |
204 | 1 | equemene | END IF |
205 | 1 | equemene | RETURN |
206 | 1 | equemene | END IF |
207 | 1 | equemene | * |
208 | 1 | equemene | * Start the operations. |
209 | 1 | equemene | * |
210 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
211 | 1 | equemene | * |
212 | 1 | equemene | * Form C := alpha*A*A' + beta*C. |
213 | 1 | equemene | * |
214 | 1 | equemene | IF (UPPER) THEN |
215 | 1 | equemene | DO 130 J = 1,N |
216 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
217 | 1 | equemene | DO 90 I = 1,J |
218 | 1 | equemene | C(I,J) = ZERO |
219 | 1 | equemene | 90 CONTINUE |
220 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
221 | 1 | equemene | DO 100 I = 1,J |
222 | 1 | equemene | C(I,J) = BETA*C(I,J) |
223 | 1 | equemene | 100 CONTINUE |
224 | 1 | equemene | END IF |
225 | 1 | equemene | DO 120 L = 1,K |
226 | 1 | equemene | IF (A(J,L).NE.ZERO) THEN |
227 | 1 | equemene | TEMP = ALPHA*A(J,L) |
228 | 1 | equemene | DO 110 I = 1,J |
229 | 1 | equemene | C(I,J) = C(I,J) + TEMP*A(I,L) |
230 | 1 | equemene | 110 CONTINUE |
231 | 1 | equemene | END IF |
232 | 1 | equemene | 120 CONTINUE |
233 | 1 | equemene | 130 CONTINUE |
234 | 1 | equemene | ELSE |
235 | 1 | equemene | DO 180 J = 1,N |
236 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
237 | 1 | equemene | DO 140 I = J,N |
238 | 1 | equemene | C(I,J) = ZERO |
239 | 1 | equemene | 140 CONTINUE |
240 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
241 | 1 | equemene | DO 150 I = J,N |
242 | 1 | equemene | C(I,J) = BETA*C(I,J) |
243 | 1 | equemene | 150 CONTINUE |
244 | 1 | equemene | END IF |
245 | 1 | equemene | DO 170 L = 1,K |
246 | 1 | equemene | IF (A(J,L).NE.ZERO) THEN |
247 | 1 | equemene | TEMP = ALPHA*A(J,L) |
248 | 1 | equemene | DO 160 I = J,N |
249 | 1 | equemene | C(I,J) = C(I,J) + TEMP*A(I,L) |
250 | 1 | equemene | 160 CONTINUE |
251 | 1 | equemene | END IF |
252 | 1 | equemene | 170 CONTINUE |
253 | 1 | equemene | 180 CONTINUE |
254 | 1 | equemene | END IF |
255 | 1 | equemene | ELSE |
256 | 1 | equemene | * |
257 | 1 | equemene | * Form C := alpha*A'*A + beta*C. |
258 | 1 | equemene | * |
259 | 1 | equemene | IF (UPPER) THEN |
260 | 1 | equemene | DO 210 J = 1,N |
261 | 1 | equemene | DO 200 I = 1,J |
262 | 1 | equemene | TEMP = ZERO |
263 | 1 | equemene | DO 190 L = 1,K |
264 | 1 | equemene | TEMP = TEMP + A(L,I)*A(L,J) |
265 | 1 | equemene | 190 CONTINUE |
266 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
267 | 1 | equemene | C(I,J) = ALPHA*TEMP |
268 | 1 | equemene | ELSE |
269 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
270 | 1 | equemene | END IF |
271 | 1 | equemene | 200 CONTINUE |
272 | 1 | equemene | 210 CONTINUE |
273 | 1 | equemene | ELSE |
274 | 1 | equemene | DO 240 J = 1,N |
275 | 1 | equemene | DO 230 I = J,N |
276 | 1 | equemene | TEMP = ZERO |
277 | 1 | equemene | DO 220 L = 1,K |
278 | 1 | equemene | TEMP = TEMP + A(L,I)*A(L,J) |
279 | 1 | equemene | 220 CONTINUE |
280 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
281 | 1 | equemene | C(I,J) = ALPHA*TEMP |
282 | 1 | equemene | ELSE |
283 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
284 | 1 | equemene | END IF |
285 | 1 | equemene | 230 CONTINUE |
286 | 1 | equemene | 240 CONTINUE |
287 | 1 | equemene | END IF |
288 | 1 | equemene | END IF |
289 | 1 | equemene | * |
290 | 1 | equemene | RETURN |
291 | 1 | equemene | * |
292 | 1 | equemene | * End of CSYRK . |
293 | 1 | equemene | * |
294 | 1 | equemene | END |