Statistiques
| Révision :

root / src / blas / chpmv.f @ 8

Historique | Voir | Annoter | Télécharger (7,98 ko)

1 1 equemene
      SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      COMPLEX ALPHA,BETA
4 1 equemene
      INTEGER INCX,INCY,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      COMPLEX AP(*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  CHPMV  performs the matrix-vector operation
15 1 equemene
*
16 1 equemene
*     y := alpha*A*x + beta*y,
17 1 equemene
*
18 1 equemene
*  where alpha and beta are scalars, x and y are n element vectors and
19 1 equemene
*  A is an n by n hermitian matrix, supplied in packed form.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the matrix A is supplied in the packed
27 1 equemene
*           array AP as follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 equemene
*                                  supplied in AP.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 equemene
*                                  supplied in AP.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - COMPLEX         .
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  AP     - COMPLEX          array of DIMENSION at least
47 1 equemene
*           ( ( n*( n + 1 ) )/2 ).
48 1 equemene
*           Before entry with UPLO = 'U' or 'u', the array AP must
49 1 equemene
*           contain the upper triangular part of the hermitian matrix
50 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
51 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
52 1 equemene
*           and a( 2, 2 ) respectively, and so on.
53 1 equemene
*           Before entry with UPLO = 'L' or 'l', the array AP must
54 1 equemene
*           contain the lower triangular part of the hermitian matrix
55 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
56 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
57 1 equemene
*           and a( 3, 1 ) respectively, and so on.
58 1 equemene
*           Note that the imaginary parts of the diagonal elements need
59 1 equemene
*           not be set and are assumed to be zero.
60 1 equemene
*           Unchanged on exit.
61 1 equemene
*
62 1 equemene
*  X      - COMPLEX          array of dimension at least
63 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
64 1 equemene
*           Before entry, the incremented array X must contain the n
65 1 equemene
*           element vector x.
66 1 equemene
*           Unchanged on exit.
67 1 equemene
*
68 1 equemene
*  INCX   - INTEGER.
69 1 equemene
*           On entry, INCX specifies the increment for the elements of
70 1 equemene
*           X. INCX must not be zero.
71 1 equemene
*           Unchanged on exit.
72 1 equemene
*
73 1 equemene
*  BETA   - COMPLEX         .
74 1 equemene
*           On entry, BETA specifies the scalar beta. When BETA is
75 1 equemene
*           supplied as zero then Y need not be set on input.
76 1 equemene
*           Unchanged on exit.
77 1 equemene
*
78 1 equemene
*  Y      - COMPLEX          array of dimension at least
79 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
80 1 equemene
*           Before entry, the incremented array Y must contain the n
81 1 equemene
*           element vector y. On exit, Y is overwritten by the updated
82 1 equemene
*           vector y.
83 1 equemene
*
84 1 equemene
*  INCY   - INTEGER.
85 1 equemene
*           On entry, INCY specifies the increment for the elements of
86 1 equemene
*           Y. INCY must not be zero.
87 1 equemene
*           Unchanged on exit.
88 1 equemene
*
89 1 equemene
*
90 1 equemene
*  Level 2 Blas routine.
91 1 equemene
*
92 1 equemene
*  -- Written on 22-October-1986.
93 1 equemene
*     Jack Dongarra, Argonne National Lab.
94 1 equemene
*     Jeremy Du Croz, Nag Central Office.
95 1 equemene
*     Sven Hammarling, Nag Central Office.
96 1 equemene
*     Richard Hanson, Sandia National Labs.
97 1 equemene
*
98 1 equemene
*
99 1 equemene
*     .. Parameters ..
100 1 equemene
      COMPLEX ONE
101 1 equemene
      PARAMETER (ONE= (1.0E+0,0.0E+0))
102 1 equemene
      COMPLEX ZERO
103 1 equemene
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
104 1 equemene
*     ..
105 1 equemene
*     .. Local Scalars ..
106 1 equemene
      COMPLEX TEMP1,TEMP2
107 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
108 1 equemene
*     ..
109 1 equemene
*     .. External Functions ..
110 1 equemene
      LOGICAL LSAME
111 1 equemene
      EXTERNAL LSAME
112 1 equemene
*     ..
113 1 equemene
*     .. External Subroutines ..
114 1 equemene
      EXTERNAL XERBLA
115 1 equemene
*     ..
116 1 equemene
*     .. Intrinsic Functions ..
117 1 equemene
      INTRINSIC CONJG,REAL
118 1 equemene
*     ..
119 1 equemene
*
120 1 equemene
*     Test the input parameters.
121 1 equemene
*
122 1 equemene
      INFO = 0
123 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
124 1 equemene
          INFO = 1
125 1 equemene
      ELSE IF (N.LT.0) THEN
126 1 equemene
          INFO = 2
127 1 equemene
      ELSE IF (INCX.EQ.0) THEN
128 1 equemene
          INFO = 6
129 1 equemene
      ELSE IF (INCY.EQ.0) THEN
130 1 equemene
          INFO = 9
131 1 equemene
      END IF
132 1 equemene
      IF (INFO.NE.0) THEN
133 1 equemene
          CALL XERBLA('CHPMV ',INFO)
134 1 equemene
          RETURN
135 1 equemene
      END IF
136 1 equemene
*
137 1 equemene
*     Quick return if possible.
138 1 equemene
*
139 1 equemene
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
140 1 equemene
*
141 1 equemene
*     Set up the start points in  X  and  Y.
142 1 equemene
*
143 1 equemene
      IF (INCX.GT.0) THEN
144 1 equemene
          KX = 1
145 1 equemene
      ELSE
146 1 equemene
          KX = 1 - (N-1)*INCX
147 1 equemene
      END IF
148 1 equemene
      IF (INCY.GT.0) THEN
149 1 equemene
          KY = 1
150 1 equemene
      ELSE
151 1 equemene
          KY = 1 - (N-1)*INCY
152 1 equemene
      END IF
153 1 equemene
*
154 1 equemene
*     Start the operations. In this version the elements of the array AP
155 1 equemene
*     are accessed sequentially with one pass through AP.
156 1 equemene
*
157 1 equemene
*     First form  y := beta*y.
158 1 equemene
*
159 1 equemene
      IF (BETA.NE.ONE) THEN
160 1 equemene
          IF (INCY.EQ.1) THEN
161 1 equemene
              IF (BETA.EQ.ZERO) THEN
162 1 equemene
                  DO 10 I = 1,N
163 1 equemene
                      Y(I) = ZERO
164 1 equemene
   10             CONTINUE
165 1 equemene
              ELSE
166 1 equemene
                  DO 20 I = 1,N
167 1 equemene
                      Y(I) = BETA*Y(I)
168 1 equemene
   20             CONTINUE
169 1 equemene
              END IF
170 1 equemene
          ELSE
171 1 equemene
              IY = KY
172 1 equemene
              IF (BETA.EQ.ZERO) THEN
173 1 equemene
                  DO 30 I = 1,N
174 1 equemene
                      Y(IY) = ZERO
175 1 equemene
                      IY = IY + INCY
176 1 equemene
   30             CONTINUE
177 1 equemene
              ELSE
178 1 equemene
                  DO 40 I = 1,N
179 1 equemene
                      Y(IY) = BETA*Y(IY)
180 1 equemene
                      IY = IY + INCY
181 1 equemene
   40             CONTINUE
182 1 equemene
              END IF
183 1 equemene
          END IF
184 1 equemene
      END IF
185 1 equemene
      IF (ALPHA.EQ.ZERO) RETURN
186 1 equemene
      KK = 1
187 1 equemene
      IF (LSAME(UPLO,'U')) THEN
188 1 equemene
*
189 1 equemene
*        Form  y  when AP contains the upper triangle.
190 1 equemene
*
191 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
192 1 equemene
              DO 60 J = 1,N
193 1 equemene
                  TEMP1 = ALPHA*X(J)
194 1 equemene
                  TEMP2 = ZERO
195 1 equemene
                  K = KK
196 1 equemene
                  DO 50 I = 1,J - 1
197 1 equemene
                      Y(I) = Y(I) + TEMP1*AP(K)
198 1 equemene
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
199 1 equemene
                      K = K + 1
200 1 equemene
   50             CONTINUE
201 1 equemene
                  Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
202 1 equemene
                  KK = KK + J
203 1 equemene
   60         CONTINUE
204 1 equemene
          ELSE
205 1 equemene
              JX = KX
206 1 equemene
              JY = KY
207 1 equemene
              DO 80 J = 1,N
208 1 equemene
                  TEMP1 = ALPHA*X(JX)
209 1 equemene
                  TEMP2 = ZERO
210 1 equemene
                  IX = KX
211 1 equemene
                  IY = KY
212 1 equemene
                  DO 70 K = KK,KK + J - 2
213 1 equemene
                      Y(IY) = Y(IY) + TEMP1*AP(K)
214 1 equemene
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
215 1 equemene
                      IX = IX + INCX
216 1 equemene
                      IY = IY + INCY
217 1 equemene
   70             CONTINUE
218 1 equemene
                  Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
219 1 equemene
                  JX = JX + INCX
220 1 equemene
                  JY = JY + INCY
221 1 equemene
                  KK = KK + J
222 1 equemene
   80         CONTINUE
223 1 equemene
          END IF
224 1 equemene
      ELSE
225 1 equemene
*
226 1 equemene
*        Form  y  when AP contains the lower triangle.
227 1 equemene
*
228 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
229 1 equemene
              DO 100 J = 1,N
230 1 equemene
                  TEMP1 = ALPHA*X(J)
231 1 equemene
                  TEMP2 = ZERO
232 1 equemene
                  Y(J) = Y(J) + TEMP1*REAL(AP(KK))
233 1 equemene
                  K = KK + 1
234 1 equemene
                  DO 90 I = J + 1,N
235 1 equemene
                      Y(I) = Y(I) + TEMP1*AP(K)
236 1 equemene
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
237 1 equemene
                      K = K + 1
238 1 equemene
   90             CONTINUE
239 1 equemene
                  Y(J) = Y(J) + ALPHA*TEMP2
240 1 equemene
                  KK = KK + (N-J+1)
241 1 equemene
  100         CONTINUE
242 1 equemene
          ELSE
243 1 equemene
              JX = KX
244 1 equemene
              JY = KY
245 1 equemene
              DO 120 J = 1,N
246 1 equemene
                  TEMP1 = ALPHA*X(JX)
247 1 equemene
                  TEMP2 = ZERO
248 1 equemene
                  Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
249 1 equemene
                  IX = JX
250 1 equemene
                  IY = JY
251 1 equemene
                  DO 110 K = KK + 1,KK + N - J
252 1 equemene
                      IX = IX + INCX
253 1 equemene
                      IY = IY + INCY
254 1 equemene
                      Y(IY) = Y(IY) + TEMP1*AP(K)
255 1 equemene
                      TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
256 1 equemene
  110             CONTINUE
257 1 equemene
                  Y(JY) = Y(JY) + ALPHA*TEMP2
258 1 equemene
                  JX = JX + INCX
259 1 equemene
                  JY = JY + INCY
260 1 equemene
                  KK = KK + (N-J+1)
261 1 equemene
  120         CONTINUE
262 1 equemene
          END IF
263 1 equemene
      END IF
264 1 equemene
*
265 1 equemene
      RETURN
266 1 equemene
*
267 1 equemene
*     End of CHPMV .
268 1 equemene
*
269 1 equemene
      END