Statistiques
| Révision :

root / src / blas / cher.f @ 8

Historique | Voir | Annoter | Télécharger (6,44 ko)

1 1 equemene
      SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      REAL ALPHA
4 1 equemene
      INTEGER INCX,LDA,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      COMPLEX A(LDA,*),X(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  CHER   performs the hermitian rank 1 operation
15 1 equemene
*
16 1 equemene
*     A := alpha*x*conjg( x' ) + A,
17 1 equemene
*
18 1 equemene
*  where alpha is a real scalar, x is an n element vector and A is an
19 1 equemene
*  n by n hermitian matrix.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the array A is to be referenced as
27 1 equemene
*           follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30 1 equemene
*                                  is to be referenced.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33 1 equemene
*                                  is to be referenced.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - REAL            .
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  X      - COMPLEX          array of dimension at least
47 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 equemene
*           Before entry, the incremented array X must contain the n
49 1 equemene
*           element vector x.
50 1 equemene
*           Unchanged on exit.
51 1 equemene
*
52 1 equemene
*  INCX   - INTEGER.
53 1 equemene
*           On entry, INCX specifies the increment for the elements of
54 1 equemene
*           X. INCX must not be zero.
55 1 equemene
*           Unchanged on exit.
56 1 equemene
*
57 1 equemene
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
58 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
59 1 equemene
*           upper triangular part of the array A must contain the upper
60 1 equemene
*           triangular part of the hermitian matrix and the strictly
61 1 equemene
*           lower triangular part of A is not referenced. On exit, the
62 1 equemene
*           upper triangular part of the array A is overwritten by the
63 1 equemene
*           upper triangular part of the updated matrix.
64 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading n by n
65 1 equemene
*           lower triangular part of the array A must contain the lower
66 1 equemene
*           triangular part of the hermitian matrix and the strictly
67 1 equemene
*           upper triangular part of A is not referenced. On exit, the
68 1 equemene
*           lower triangular part of the array A is overwritten by the
69 1 equemene
*           lower triangular part of the updated matrix.
70 1 equemene
*           Note that the imaginary parts of the diagonal elements need
71 1 equemene
*           not be set, they are assumed to be zero, and on exit they
72 1 equemene
*           are set to zero.
73 1 equemene
*
74 1 equemene
*  LDA    - INTEGER.
75 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
76 1 equemene
*           in the calling (sub) program. LDA must be at least
77 1 equemene
*           max( 1, n ).
78 1 equemene
*           Unchanged on exit.
79 1 equemene
*
80 1 equemene
*
81 1 equemene
*  Level 2 Blas routine.
82 1 equemene
*
83 1 equemene
*  -- Written on 22-October-1986.
84 1 equemene
*     Jack Dongarra, Argonne National Lab.
85 1 equemene
*     Jeremy Du Croz, Nag Central Office.
86 1 equemene
*     Sven Hammarling, Nag Central Office.
87 1 equemene
*     Richard Hanson, Sandia National Labs.
88 1 equemene
*
89 1 equemene
*
90 1 equemene
*     .. Parameters ..
91 1 equemene
      COMPLEX ZERO
92 1 equemene
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
93 1 equemene
*     ..
94 1 equemene
*     .. Local Scalars ..
95 1 equemene
      COMPLEX TEMP
96 1 equemene
      INTEGER I,INFO,IX,J,JX,KX
97 1 equemene
*     ..
98 1 equemene
*     .. External Functions ..
99 1 equemene
      LOGICAL LSAME
100 1 equemene
      EXTERNAL LSAME
101 1 equemene
*     ..
102 1 equemene
*     .. External Subroutines ..
103 1 equemene
      EXTERNAL XERBLA
104 1 equemene
*     ..
105 1 equemene
*     .. Intrinsic Functions ..
106 1 equemene
      INTRINSIC CONJG,MAX,REAL
107 1 equemene
*     ..
108 1 equemene
*
109 1 equemene
*     Test the input parameters.
110 1 equemene
*
111 1 equemene
      INFO = 0
112 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
113 1 equemene
          INFO = 1
114 1 equemene
      ELSE IF (N.LT.0) THEN
115 1 equemene
          INFO = 2
116 1 equemene
      ELSE IF (INCX.EQ.0) THEN
117 1 equemene
          INFO = 5
118 1 equemene
      ELSE IF (LDA.LT.MAX(1,N)) THEN
119 1 equemene
          INFO = 7
120 1 equemene
      END IF
121 1 equemene
      IF (INFO.NE.0) THEN
122 1 equemene
          CALL XERBLA('CHER  ',INFO)
123 1 equemene
          RETURN
124 1 equemene
      END IF
125 1 equemene
*
126 1 equemene
*     Quick return if possible.
127 1 equemene
*
128 1 equemene
      IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
129 1 equemene
*
130 1 equemene
*     Set the start point in X if the increment is not unity.
131 1 equemene
*
132 1 equemene
      IF (INCX.LE.0) THEN
133 1 equemene
          KX = 1 - (N-1)*INCX
134 1 equemene
      ELSE IF (INCX.NE.1) THEN
135 1 equemene
          KX = 1
136 1 equemene
      END IF
137 1 equemene
*
138 1 equemene
*     Start the operations. In this version the elements of A are
139 1 equemene
*     accessed sequentially with one pass through the triangular part
140 1 equemene
*     of A.
141 1 equemene
*
142 1 equemene
      IF (LSAME(UPLO,'U')) THEN
143 1 equemene
*
144 1 equemene
*        Form  A  when A is stored in upper triangle.
145 1 equemene
*
146 1 equemene
          IF (INCX.EQ.1) THEN
147 1 equemene
              DO 20 J = 1,N
148 1 equemene
                  IF (X(J).NE.ZERO) THEN
149 1 equemene
                      TEMP = ALPHA*CONJG(X(J))
150 1 equemene
                      DO 10 I = 1,J - 1
151 1 equemene
                          A(I,J) = A(I,J) + X(I)*TEMP
152 1 equemene
   10                 CONTINUE
153 1 equemene
                      A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
154 1 equemene
                  ELSE
155 1 equemene
                      A(J,J) = REAL(A(J,J))
156 1 equemene
                  END IF
157 1 equemene
   20         CONTINUE
158 1 equemene
          ELSE
159 1 equemene
              JX = KX
160 1 equemene
              DO 40 J = 1,N
161 1 equemene
                  IF (X(JX).NE.ZERO) THEN
162 1 equemene
                      TEMP = ALPHA*CONJG(X(JX))
163 1 equemene
                      IX = KX
164 1 equemene
                      DO 30 I = 1,J - 1
165 1 equemene
                          A(I,J) = A(I,J) + X(IX)*TEMP
166 1 equemene
                          IX = IX + INCX
167 1 equemene
   30                 CONTINUE
168 1 equemene
                      A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
169 1 equemene
                  ELSE
170 1 equemene
                      A(J,J) = REAL(A(J,J))
171 1 equemene
                  END IF
172 1 equemene
                  JX = JX + INCX
173 1 equemene
   40         CONTINUE
174 1 equemene
          END IF
175 1 equemene
      ELSE
176 1 equemene
*
177 1 equemene
*        Form  A  when A is stored in lower triangle.
178 1 equemene
*
179 1 equemene
          IF (INCX.EQ.1) THEN
180 1 equemene
              DO 60 J = 1,N
181 1 equemene
                  IF (X(J).NE.ZERO) THEN
182 1 equemene
                      TEMP = ALPHA*CONJG(X(J))
183 1 equemene
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
184 1 equemene
                      DO 50 I = J + 1,N
185 1 equemene
                          A(I,J) = A(I,J) + X(I)*TEMP
186 1 equemene
   50                 CONTINUE
187 1 equemene
                  ELSE
188 1 equemene
                      A(J,J) = REAL(A(J,J))
189 1 equemene
                  END IF
190 1 equemene
   60         CONTINUE
191 1 equemene
          ELSE
192 1 equemene
              JX = KX
193 1 equemene
              DO 80 J = 1,N
194 1 equemene
                  IF (X(JX).NE.ZERO) THEN
195 1 equemene
                      TEMP = ALPHA*CONJG(X(JX))
196 1 equemene
                      A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
197 1 equemene
                      IX = JX
198 1 equemene
                      DO 70 I = J + 1,N
199 1 equemene
                          IX = IX + INCX
200 1 equemene
                          A(I,J) = A(I,J) + X(IX)*TEMP
201 1 equemene
   70                 CONTINUE
202 1 equemene
                  ELSE
203 1 equemene
                      A(J,J) = REAL(A(J,J))
204 1 equemene
                  END IF
205 1 equemene
                  JX = JX + INCX
206 1 equemene
   80         CONTINUE
207 1 equemene
          END IF
208 1 equemene
      END IF
209 1 equemene
*
210 1 equemene
      RETURN
211 1 equemene
*
212 1 equemene
*     End of CHER  .
213 1 equemene
*
214 1 equemene
      END