Statistiques
| Révision :

root / src / blas / chbmv.f @ 8

Historique | Voir | Annoter | Télécharger (9,49 ko)

1 1 equemene
      SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      COMPLEX ALPHA,BETA
4 1 equemene
      INTEGER INCX,INCY,K,LDA,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      COMPLEX A(LDA,*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  CHBMV  performs the matrix-vector  operation
15 1 equemene
*
16 1 equemene
*     y := alpha*A*x + beta*y,
17 1 equemene
*
18 1 equemene
*  where alpha and beta are scalars, x and y are n element vectors and
19 1 equemene
*  A is an n by n hermitian band matrix, with k super-diagonals.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the band matrix A is being supplied as
27 1 equemene
*           follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 equemene
*                                  being supplied.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 equemene
*                                  being supplied.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  K      - INTEGER.
43 1 equemene
*           On entry, K specifies the number of super-diagonals of the
44 1 equemene
*           matrix A. K must satisfy  0 .le. K.
45 1 equemene
*           Unchanged on exit.
46 1 equemene
*
47 1 equemene
*  ALPHA  - COMPLEX         .
48 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
49 1 equemene
*           Unchanged on exit.
50 1 equemene
*
51 1 equemene
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
52 1 equemene
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53 1 equemene
*           by n part of the array A must contain the upper triangular
54 1 equemene
*           band part of the hermitian matrix, supplied column by
55 1 equemene
*           column, with the leading diagonal of the matrix in row
56 1 equemene
*           ( k + 1 ) of the array, the first super-diagonal starting at
57 1 equemene
*           position 2 in row k, and so on. The top left k by k triangle
58 1 equemene
*           of the array A is not referenced.
59 1 equemene
*           The following program segment will transfer the upper
60 1 equemene
*           triangular part of a hermitian band matrix from conventional
61 1 equemene
*           full matrix storage to band storage:
62 1 equemene
*
63 1 equemene
*                 DO 20, J = 1, N
64 1 equemene
*                    M = K + 1 - J
65 1 equemene
*                    DO 10, I = MAX( 1, J - K ), J
66 1 equemene
*                       A( M + I, J ) = matrix( I, J )
67 1 equemene
*              10    CONTINUE
68 1 equemene
*              20 CONTINUE
69 1 equemene
*
70 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71 1 equemene
*           by n part of the array A must contain the lower triangular
72 1 equemene
*           band part of the hermitian matrix, supplied column by
73 1 equemene
*           column, with the leading diagonal of the matrix in row 1 of
74 1 equemene
*           the array, the first sub-diagonal starting at position 1 in
75 1 equemene
*           row 2, and so on. The bottom right k by k triangle of the
76 1 equemene
*           array A is not referenced.
77 1 equemene
*           The following program segment will transfer the lower
78 1 equemene
*           triangular part of a hermitian band matrix from conventional
79 1 equemene
*           full matrix storage to band storage:
80 1 equemene
*
81 1 equemene
*                 DO 20, J = 1, N
82 1 equemene
*                    M = 1 - J
83 1 equemene
*                    DO 10, I = J, MIN( N, J + K )
84 1 equemene
*                       A( M + I, J ) = matrix( I, J )
85 1 equemene
*              10    CONTINUE
86 1 equemene
*              20 CONTINUE
87 1 equemene
*
88 1 equemene
*           Note that the imaginary parts of the diagonal elements need
89 1 equemene
*           not be set and are assumed to be zero.
90 1 equemene
*           Unchanged on exit.
91 1 equemene
*
92 1 equemene
*  LDA    - INTEGER.
93 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
94 1 equemene
*           in the calling (sub) program. LDA must be at least
95 1 equemene
*           ( k + 1 ).
96 1 equemene
*           Unchanged on exit.
97 1 equemene
*
98 1 equemene
*  X      - COMPLEX          array of DIMENSION at least
99 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
100 1 equemene
*           Before entry, the incremented array X must contain the
101 1 equemene
*           vector x.
102 1 equemene
*           Unchanged on exit.
103 1 equemene
*
104 1 equemene
*  INCX   - INTEGER.
105 1 equemene
*           On entry, INCX specifies the increment for the elements of
106 1 equemene
*           X. INCX must not be zero.
107 1 equemene
*           Unchanged on exit.
108 1 equemene
*
109 1 equemene
*  BETA   - COMPLEX         .
110 1 equemene
*           On entry, BETA specifies the scalar beta.
111 1 equemene
*           Unchanged on exit.
112 1 equemene
*
113 1 equemene
*  Y      - COMPLEX          array of DIMENSION at least
114 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
115 1 equemene
*           Before entry, the incremented array Y must contain the
116 1 equemene
*           vector y. On exit, Y is overwritten by the updated vector y.
117 1 equemene
*
118 1 equemene
*  INCY   - INTEGER.
119 1 equemene
*           On entry, INCY specifies the increment for the elements of
120 1 equemene
*           Y. INCY must not be zero.
121 1 equemene
*           Unchanged on exit.
122 1 equemene
*
123 1 equemene
*
124 1 equemene
*  Level 2 Blas routine.
125 1 equemene
*
126 1 equemene
*  -- Written on 22-October-1986.
127 1 equemene
*     Jack Dongarra, Argonne National Lab.
128 1 equemene
*     Jeremy Du Croz, Nag Central Office.
129 1 equemene
*     Sven Hammarling, Nag Central Office.
130 1 equemene
*     Richard Hanson, Sandia National Labs.
131 1 equemene
*
132 1 equemene
*
133 1 equemene
*     .. Parameters ..
134 1 equemene
      COMPLEX ONE
135 1 equemene
      PARAMETER (ONE= (1.0E+0,0.0E+0))
136 1 equemene
      COMPLEX ZERO
137 1 equemene
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
138 1 equemene
*     ..
139 1 equemene
*     .. Local Scalars ..
140 1 equemene
      COMPLEX TEMP1,TEMP2
141 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
142 1 equemene
*     ..
143 1 equemene
*     .. External Functions ..
144 1 equemene
      LOGICAL LSAME
145 1 equemene
      EXTERNAL LSAME
146 1 equemene
*     ..
147 1 equemene
*     .. External Subroutines ..
148 1 equemene
      EXTERNAL XERBLA
149 1 equemene
*     ..
150 1 equemene
*     .. Intrinsic Functions ..
151 1 equemene
      INTRINSIC CONJG,MAX,MIN,REAL
152 1 equemene
*     ..
153 1 equemene
*
154 1 equemene
*     Test the input parameters.
155 1 equemene
*
156 1 equemene
      INFO = 0
157 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
158 1 equemene
          INFO = 1
159 1 equemene
      ELSE IF (N.LT.0) THEN
160 1 equemene
          INFO = 2
161 1 equemene
      ELSE IF (K.LT.0) THEN
162 1 equemene
          INFO = 3
163 1 equemene
      ELSE IF (LDA.LT. (K+1)) THEN
164 1 equemene
          INFO = 6
165 1 equemene
      ELSE IF (INCX.EQ.0) THEN
166 1 equemene
          INFO = 8
167 1 equemene
      ELSE IF (INCY.EQ.0) THEN
168 1 equemene
          INFO = 11
169 1 equemene
      END IF
170 1 equemene
      IF (INFO.NE.0) THEN
171 1 equemene
          CALL XERBLA('CHBMV ',INFO)
172 1 equemene
          RETURN
173 1 equemene
      END IF
174 1 equemene
*
175 1 equemene
*     Quick return if possible.
176 1 equemene
*
177 1 equemene
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
178 1 equemene
*
179 1 equemene
*     Set up the start points in  X  and  Y.
180 1 equemene
*
181 1 equemene
      IF (INCX.GT.0) THEN
182 1 equemene
          KX = 1
183 1 equemene
      ELSE
184 1 equemene
          KX = 1 - (N-1)*INCX
185 1 equemene
      END IF
186 1 equemene
      IF (INCY.GT.0) THEN
187 1 equemene
          KY = 1
188 1 equemene
      ELSE
189 1 equemene
          KY = 1 - (N-1)*INCY
190 1 equemene
      END IF
191 1 equemene
*
192 1 equemene
*     Start the operations. In this version the elements of the array A
193 1 equemene
*     are accessed sequentially with one pass through A.
194 1 equemene
*
195 1 equemene
*     First form  y := beta*y.
196 1 equemene
*
197 1 equemene
      IF (BETA.NE.ONE) THEN
198 1 equemene
          IF (INCY.EQ.1) THEN
199 1 equemene
              IF (BETA.EQ.ZERO) THEN
200 1 equemene
                  DO 10 I = 1,N
201 1 equemene
                      Y(I) = ZERO
202 1 equemene
   10             CONTINUE
203 1 equemene
              ELSE
204 1 equemene
                  DO 20 I = 1,N
205 1 equemene
                      Y(I) = BETA*Y(I)
206 1 equemene
   20             CONTINUE
207 1 equemene
              END IF
208 1 equemene
          ELSE
209 1 equemene
              IY = KY
210 1 equemene
              IF (BETA.EQ.ZERO) THEN
211 1 equemene
                  DO 30 I = 1,N
212 1 equemene
                      Y(IY) = ZERO
213 1 equemene
                      IY = IY + INCY
214 1 equemene
   30             CONTINUE
215 1 equemene
              ELSE
216 1 equemene
                  DO 40 I = 1,N
217 1 equemene
                      Y(IY) = BETA*Y(IY)
218 1 equemene
                      IY = IY + INCY
219 1 equemene
   40             CONTINUE
220 1 equemene
              END IF
221 1 equemene
          END IF
222 1 equemene
      END IF
223 1 equemene
      IF (ALPHA.EQ.ZERO) RETURN
224 1 equemene
      IF (LSAME(UPLO,'U')) THEN
225 1 equemene
*
226 1 equemene
*        Form  y  when upper triangle of A is stored.
227 1 equemene
*
228 1 equemene
          KPLUS1 = K + 1
229 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
230 1 equemene
              DO 60 J = 1,N
231 1 equemene
                  TEMP1 = ALPHA*X(J)
232 1 equemene
                  TEMP2 = ZERO
233 1 equemene
                  L = KPLUS1 - J
234 1 equemene
                  DO 50 I = MAX(1,J-K),J - 1
235 1 equemene
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
236 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
237 1 equemene
   50             CONTINUE
238 1 equemene
                  Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
239 1 equemene
   60         CONTINUE
240 1 equemene
          ELSE
241 1 equemene
              JX = KX
242 1 equemene
              JY = KY
243 1 equemene
              DO 80 J = 1,N
244 1 equemene
                  TEMP1 = ALPHA*X(JX)
245 1 equemene
                  TEMP2 = ZERO
246 1 equemene
                  IX = KX
247 1 equemene
                  IY = KY
248 1 equemene
                  L = KPLUS1 - J
249 1 equemene
                  DO 70 I = MAX(1,J-K),J - 1
250 1 equemene
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
251 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
252 1 equemene
                      IX = IX + INCX
253 1 equemene
                      IY = IY + INCY
254 1 equemene
   70             CONTINUE
255 1 equemene
                  Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
256 1 equemene
                  JX = JX + INCX
257 1 equemene
                  JY = JY + INCY
258 1 equemene
                  IF (J.GT.K) THEN
259 1 equemene
                      KX = KX + INCX
260 1 equemene
                      KY = KY + INCY
261 1 equemene
                  END IF
262 1 equemene
   80         CONTINUE
263 1 equemene
          END IF
264 1 equemene
      ELSE
265 1 equemene
*
266 1 equemene
*        Form  y  when lower triangle of A is stored.
267 1 equemene
*
268 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
269 1 equemene
              DO 100 J = 1,N
270 1 equemene
                  TEMP1 = ALPHA*X(J)
271 1 equemene
                  TEMP2 = ZERO
272 1 equemene
                  Y(J) = Y(J) + TEMP1*REAL(A(1,J))
273 1 equemene
                  L = 1 - J
274 1 equemene
                  DO 90 I = J + 1,MIN(N,J+K)
275 1 equemene
                      Y(I) = Y(I) + TEMP1*A(L+I,J)
276 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
277 1 equemene
   90             CONTINUE
278 1 equemene
                  Y(J) = Y(J) + ALPHA*TEMP2
279 1 equemene
  100         CONTINUE
280 1 equemene
          ELSE
281 1 equemene
              JX = KX
282 1 equemene
              JY = KY
283 1 equemene
              DO 120 J = 1,N
284 1 equemene
                  TEMP1 = ALPHA*X(JX)
285 1 equemene
                  TEMP2 = ZERO
286 1 equemene
                  Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
287 1 equemene
                  L = 1 - J
288 1 equemene
                  IX = JX
289 1 equemene
                  IY = JY
290 1 equemene
                  DO 110 I = J + 1,MIN(N,J+K)
291 1 equemene
                      IX = IX + INCX
292 1 equemene
                      IY = IY + INCY
293 1 equemene
                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
294 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
295 1 equemene
  110             CONTINUE
296 1 equemene
                  Y(JY) = Y(JY) + ALPHA*TEMP2
297 1 equemene
                  JX = JX + INCX
298 1 equemene
                  JY = JY + INCY
299 1 equemene
  120         CONTINUE
300 1 equemene
          END IF
301 1 equemene
      END IF
302 1 equemene
*
303 1 equemene
      RETURN
304 1 equemene
*
305 1 equemene
*     End of CHBMV .
306 1 equemene
*
307 1 equemene
      END