Statistiques
| Révision :

root / src / blas / ztrmm.f @ 7

Historique | Voir | Annoter | Télécharger (12,65 ko)

1
      SUBROUTINE ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
2
*     .. Scalar Arguments ..
3
      DOUBLE COMPLEX ALPHA
4
      INTEGER LDA,LDB,M,N
5
      CHARACTER DIAG,SIDE,TRANSA,UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE COMPLEX A(LDA,*),B(LDB,*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  ZTRMM  performs one of the matrix-matrix operations
15
*
16
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A )
17
*
18
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
19
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
20
*
21
*     op( A ) = A   or   op( A ) = A'   or   op( A ) = conjg( A' ).
22
*
23
*  Arguments
24
*  ==========
25
*
26
*  SIDE   - CHARACTER*1.
27
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
28
*           the left or right as follows:
29
*
30
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
31
*
32
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
33
*
34
*           Unchanged on exit.
35
*
36
*  UPLO   - CHARACTER*1.
37
*           On entry, UPLO specifies whether the matrix A is an upper or
38
*           lower triangular matrix as follows:
39
*
40
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
41
*
42
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
43
*
44
*           Unchanged on exit.
45
*
46
*  TRANSA - CHARACTER*1.
47
*           On entry, TRANSA specifies the form of op( A ) to be used in
48
*           the matrix multiplication as follows:
49
*
50
*              TRANSA = 'N' or 'n'   op( A ) = A.
51
*
52
*              TRANSA = 'T' or 't'   op( A ) = A'.
53
*
54
*              TRANSA = 'C' or 'c'   op( A ) = conjg( A' ).
55
*
56
*           Unchanged on exit.
57
*
58
*  DIAG   - CHARACTER*1.
59
*           On entry, DIAG specifies whether or not A is unit triangular
60
*           as follows:
61
*
62
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
63
*
64
*              DIAG = 'N' or 'n'   A is not assumed to be unit
65
*                                  triangular.
66
*
67
*           Unchanged on exit.
68
*
69
*  M      - INTEGER.
70
*           On entry, M specifies the number of rows of B. M must be at
71
*           least zero.
72
*           Unchanged on exit.
73
*
74
*  N      - INTEGER.
75
*           On entry, N specifies the number of columns of B.  N must be
76
*           at least zero.
77
*           Unchanged on exit.
78
*
79
*  ALPHA  - COMPLEX*16      .
80
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
81
*           zero then  A is not referenced and  B need not be set before
82
*           entry.
83
*           Unchanged on exit.
84
*
85
*  A      - COMPLEX*16       array of DIMENSION ( LDA, k ), where k is m
86
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
87
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
88
*           upper triangular part of the array  A must contain the upper
89
*           triangular matrix  and the strictly lower triangular part of
90
*           A is not referenced.
91
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
92
*           lower triangular part of the array  A must contain the lower
93
*           triangular matrix  and the strictly upper triangular part of
94
*           A is not referenced.
95
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
96
*           A  are not referenced either,  but are assumed to be  unity.
97
*           Unchanged on exit.
98
*
99
*  LDA    - INTEGER.
100
*           On entry, LDA specifies the first dimension of A as declared
101
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
102
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
103
*           then LDA must be at least max( 1, n ).
104
*           Unchanged on exit.
105
*
106
*  B      - COMPLEX*16       array of DIMENSION ( LDB, n ).
107
*           Before entry,  the leading  m by n part of the array  B must
108
*           contain the matrix  B,  and  on exit  is overwritten  by the
109
*           transformed matrix.
110
*
111
*  LDB    - INTEGER.
112
*           On entry, LDB specifies the first dimension of B as declared
113
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
114
*           max( 1, m ).
115
*           Unchanged on exit.
116
*
117
*
118
*  Level 3 Blas routine.
119
*
120
*  -- Written on 8-February-1989.
121
*     Jack Dongarra, Argonne National Laboratory.
122
*     Iain Duff, AERE Harwell.
123
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
124
*     Sven Hammarling, Numerical Algorithms Group Ltd.
125
*
126
*
127
*     .. External Functions ..
128
      LOGICAL LSAME
129
      EXTERNAL LSAME
130
*     ..
131
*     .. External Subroutines ..
132
      EXTERNAL XERBLA
133
*     ..
134
*     .. Intrinsic Functions ..
135
      INTRINSIC DCONJG,MAX
136
*     ..
137
*     .. Local Scalars ..
138
      DOUBLE COMPLEX TEMP
139
      INTEGER I,INFO,J,K,NROWA
140
      LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
141
*     ..
142
*     .. Parameters ..
143
      DOUBLE COMPLEX ONE
144
      PARAMETER (ONE= (1.0D+0,0.0D+0))
145
      DOUBLE COMPLEX ZERO
146
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
147
*     ..
148
*
149
*     Test the input parameters.
150
*
151
      LSIDE = LSAME(SIDE,'L')
152
      IF (LSIDE) THEN
153
          NROWA = M
154
      ELSE
155
          NROWA = N
156
      END IF
157
      NOCONJ = LSAME(TRANSA,'T')
158
      NOUNIT = LSAME(DIAG,'N')
159
      UPPER = LSAME(UPLO,'U')
160
*
161
      INFO = 0
162
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
163
          INFO = 1
164
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
165
          INFO = 2
166
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
167
     +         (.NOT.LSAME(TRANSA,'T')) .AND.
168
     +         (.NOT.LSAME(TRANSA,'C'))) THEN
169
          INFO = 3
170
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
171
          INFO = 4
172
      ELSE IF (M.LT.0) THEN
173
          INFO = 5
174
      ELSE IF (N.LT.0) THEN
175
          INFO = 6
176
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
177
          INFO = 9
178
      ELSE IF (LDB.LT.MAX(1,M)) THEN
179
          INFO = 11
180
      END IF
181
      IF (INFO.NE.0) THEN
182
          CALL XERBLA('ZTRMM ',INFO)
183
          RETURN
184
      END IF
185
*
186
*     Quick return if possible.
187
*
188
      IF (M.EQ.0 .OR. N.EQ.0) RETURN
189
*
190
*     And when  alpha.eq.zero.
191
*
192
      IF (ALPHA.EQ.ZERO) THEN
193
          DO 20 J = 1,N
194
              DO 10 I = 1,M
195
                  B(I,J) = ZERO
196
   10         CONTINUE
197
   20     CONTINUE
198
          RETURN
199
      END IF
200
*
201
*     Start the operations.
202
*
203
      IF (LSIDE) THEN
204
          IF (LSAME(TRANSA,'N')) THEN
205
*
206
*           Form  B := alpha*A*B.
207
*
208
              IF (UPPER) THEN
209
                  DO 50 J = 1,N
210
                      DO 40 K = 1,M
211
                          IF (B(K,J).NE.ZERO) THEN
212
                              TEMP = ALPHA*B(K,J)
213
                              DO 30 I = 1,K - 1
214
                                  B(I,J) = B(I,J) + TEMP*A(I,K)
215
   30                         CONTINUE
216
                              IF (NOUNIT) TEMP = TEMP*A(K,K)
217
                              B(K,J) = TEMP
218
                          END IF
219
   40                 CONTINUE
220
   50             CONTINUE
221
              ELSE
222
                  DO 80 J = 1,N
223
                      DO 70 K = M,1,-1
224
                          IF (B(K,J).NE.ZERO) THEN
225
                              TEMP = ALPHA*B(K,J)
226
                              B(K,J) = TEMP
227
                              IF (NOUNIT) B(K,J) = B(K,J)*A(K,K)
228
                              DO 60 I = K + 1,M
229
                                  B(I,J) = B(I,J) + TEMP*A(I,K)
230
   60                         CONTINUE
231
                          END IF
232
   70                 CONTINUE
233
   80             CONTINUE
234
              END IF
235
          ELSE
236
*
237
*           Form  B := alpha*A'*B   or   B := alpha*conjg( A' )*B.
238
*
239
              IF (UPPER) THEN
240
                  DO 120 J = 1,N
241
                      DO 110 I = M,1,-1
242
                          TEMP = B(I,J)
243
                          IF (NOCONJ) THEN
244
                              IF (NOUNIT) TEMP = TEMP*A(I,I)
245
                              DO 90 K = 1,I - 1
246
                                  TEMP = TEMP + A(K,I)*B(K,J)
247
   90                         CONTINUE
248
                          ELSE
249
                              IF (NOUNIT) TEMP = TEMP*DCONJG(A(I,I))
250
                              DO 100 K = 1,I - 1
251
                                  TEMP = TEMP + DCONJG(A(K,I))*B(K,J)
252
  100                         CONTINUE
253
                          END IF
254
                          B(I,J) = ALPHA*TEMP
255
  110                 CONTINUE
256
  120             CONTINUE
257
              ELSE
258
                  DO 160 J = 1,N
259
                      DO 150 I = 1,M
260
                          TEMP = B(I,J)
261
                          IF (NOCONJ) THEN
262
                              IF (NOUNIT) TEMP = TEMP*A(I,I)
263
                              DO 130 K = I + 1,M
264
                                  TEMP = TEMP + A(K,I)*B(K,J)
265
  130                         CONTINUE
266
                          ELSE
267
                              IF (NOUNIT) TEMP = TEMP*DCONJG(A(I,I))
268
                              DO 140 K = I + 1,M
269
                                  TEMP = TEMP + DCONJG(A(K,I))*B(K,J)
270
  140                         CONTINUE
271
                          END IF
272
                          B(I,J) = ALPHA*TEMP
273
  150                 CONTINUE
274
  160             CONTINUE
275
              END IF
276
          END IF
277
      ELSE
278
          IF (LSAME(TRANSA,'N')) THEN
279
*
280
*           Form  B := alpha*B*A.
281
*
282
              IF (UPPER) THEN
283
                  DO 200 J = N,1,-1
284
                      TEMP = ALPHA
285
                      IF (NOUNIT) TEMP = TEMP*A(J,J)
286
                      DO 170 I = 1,M
287
                          B(I,J) = TEMP*B(I,J)
288
  170                 CONTINUE
289
                      DO 190 K = 1,J - 1
290
                          IF (A(K,J).NE.ZERO) THEN
291
                              TEMP = ALPHA*A(K,J)
292
                              DO 180 I = 1,M
293
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
294
  180                         CONTINUE
295
                          END IF
296
  190                 CONTINUE
297
  200             CONTINUE
298
              ELSE
299
                  DO 240 J = 1,N
300
                      TEMP = ALPHA
301
                      IF (NOUNIT) TEMP = TEMP*A(J,J)
302
                      DO 210 I = 1,M
303
                          B(I,J) = TEMP*B(I,J)
304
  210                 CONTINUE
305
                      DO 230 K = J + 1,N
306
                          IF (A(K,J).NE.ZERO) THEN
307
                              TEMP = ALPHA*A(K,J)
308
                              DO 220 I = 1,M
309
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
310
  220                         CONTINUE
311
                          END IF
312
  230                 CONTINUE
313
  240             CONTINUE
314
              END IF
315
          ELSE
316
*
317
*           Form  B := alpha*B*A'   or   B := alpha*B*conjg( A' ).
318
*
319
              IF (UPPER) THEN
320
                  DO 280 K = 1,N
321
                      DO 260 J = 1,K - 1
322
                          IF (A(J,K).NE.ZERO) THEN
323
                              IF (NOCONJ) THEN
324
                                  TEMP = ALPHA*A(J,K)
325
                              ELSE
326
                                  TEMP = ALPHA*DCONJG(A(J,K))
327
                              END IF
328
                              DO 250 I = 1,M
329
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
330
  250                         CONTINUE
331
                          END IF
332
  260                 CONTINUE
333
                      TEMP = ALPHA
334
                      IF (NOUNIT) THEN
335
                          IF (NOCONJ) THEN
336
                              TEMP = TEMP*A(K,K)
337
                          ELSE
338
                              TEMP = TEMP*DCONJG(A(K,K))
339
                          END IF
340
                      END IF
341
                      IF (TEMP.NE.ONE) THEN
342
                          DO 270 I = 1,M
343
                              B(I,K) = TEMP*B(I,K)
344
  270                     CONTINUE
345
                      END IF
346
  280             CONTINUE
347
              ELSE
348
                  DO 320 K = N,1,-1
349
                      DO 300 J = K + 1,N
350
                          IF (A(J,K).NE.ZERO) THEN
351
                              IF (NOCONJ) THEN
352
                                  TEMP = ALPHA*A(J,K)
353
                              ELSE
354
                                  TEMP = ALPHA*DCONJG(A(J,K))
355
                              END IF
356
                              DO 290 I = 1,M
357
                                  B(I,J) = B(I,J) + TEMP*B(I,K)
358
  290                         CONTINUE
359
                          END IF
360
  300                 CONTINUE
361
                      TEMP = ALPHA
362
                      IF (NOUNIT) THEN
363
                          IF (NOCONJ) THEN
364
                              TEMP = TEMP*A(K,K)
365
                          ELSE
366
                              TEMP = TEMP*DCONJG(A(K,K))
367
                          END IF
368
                      END IF
369
                      IF (TEMP.NE.ONE) THEN
370
                          DO 310 I = 1,M
371
                              B(I,K) = TEMP*B(I,K)
372
  310                     CONTINUE
373
                      END IF
374
  320             CONTINUE
375
              END IF
376
          END IF
377
      END IF
378
*
379
      RETURN
380
*
381
*     End of ZTRMM .
382
*
383
      END