Statistiques
| Révision :

root / src / blas / zhpr2.f @ 7

Historique | Voir | Annoter | Télécharger (8,05 ko)

1
      SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
2
*     .. Scalar Arguments ..
3
      DOUBLE COMPLEX ALPHA
4
      INTEGER INCX,INCY,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE COMPLEX AP(*),X(*),Y(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  ZHPR2  performs the hermitian rank 2 operation
15
*
16
*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
17
*
18
*  where alpha is a scalar, x and y are n element vectors and A is an
19
*  n by n hermitian matrix, supplied in packed form.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the matrix A is supplied in the packed
27
*           array AP as follows:
28
*
29
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30
*                                  supplied in AP.
31
*
32
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33
*                                  supplied in AP.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - COMPLEX*16      .
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  X      - COMPLEX*16       array of dimension at least
47
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48
*           Before entry, the incremented array X must contain the n
49
*           element vector x.
50
*           Unchanged on exit.
51
*
52
*  INCX   - INTEGER.
53
*           On entry, INCX specifies the increment for the elements of
54
*           X. INCX must not be zero.
55
*           Unchanged on exit.
56
*
57
*  Y      - COMPLEX*16       array of dimension at least
58
*           ( 1 + ( n - 1 )*abs( INCY ) ).
59
*           Before entry, the incremented array Y must contain the n
60
*           element vector y.
61
*           Unchanged on exit.
62
*
63
*  INCY   - INTEGER.
64
*           On entry, INCY specifies the increment for the elements of
65
*           Y. INCY must not be zero.
66
*           Unchanged on exit.
67
*
68
*  AP     - COMPLEX*16       array of DIMENSION at least
69
*           ( ( n*( n + 1 ) )/2 ).
70
*           Before entry with  UPLO = 'U' or 'u', the array AP must
71
*           contain the upper triangular part of the hermitian matrix
72
*           packed sequentially, column by column, so that AP( 1 )
73
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
74
*           and a( 2, 2 ) respectively, and so on. On exit, the array
75
*           AP is overwritten by the upper triangular part of the
76
*           updated matrix.
77
*           Before entry with UPLO = 'L' or 'l', the array AP must
78
*           contain the lower triangular part of the hermitian matrix
79
*           packed sequentially, column by column, so that AP( 1 )
80
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
81
*           and a( 3, 1 ) respectively, and so on. On exit, the array
82
*           AP is overwritten by the lower triangular part of the
83
*           updated matrix.
84
*           Note that the imaginary parts of the diagonal elements need
85
*           not be set, they are assumed to be zero, and on exit they
86
*           are set to zero.
87
*
88
*
89
*  Level 2 Blas routine.
90
*
91
*  -- Written on 22-October-1986.
92
*     Jack Dongarra, Argonne National Lab.
93
*     Jeremy Du Croz, Nag Central Office.
94
*     Sven Hammarling, Nag Central Office.
95
*     Richard Hanson, Sandia National Labs.
96
*
97
*
98
*     .. Parameters ..
99
      DOUBLE COMPLEX ZERO
100
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
101
*     ..
102
*     .. Local Scalars ..
103
      DOUBLE COMPLEX TEMP1,TEMP2
104
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
105
*     ..
106
*     .. External Functions ..
107
      LOGICAL LSAME
108
      EXTERNAL LSAME
109
*     ..
110
*     .. External Subroutines ..
111
      EXTERNAL XERBLA
112
*     ..
113
*     .. Intrinsic Functions ..
114
      INTRINSIC DBLE,DCONJG
115
*     ..
116
*
117
*     Test the input parameters.
118
*
119
      INFO = 0
120
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
121
          INFO = 1
122
      ELSE IF (N.LT.0) THEN
123
          INFO = 2
124
      ELSE IF (INCX.EQ.0) THEN
125
          INFO = 5
126
      ELSE IF (INCY.EQ.0) THEN
127
          INFO = 7
128
      END IF
129
      IF (INFO.NE.0) THEN
130
          CALL XERBLA('ZHPR2 ',INFO)
131
          RETURN
132
      END IF
133
*
134
*     Quick return if possible.
135
*
136
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
137
*
138
*     Set up the start points in X and Y if the increments are not both
139
*     unity.
140
*
141
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
142
          IF (INCX.GT.0) THEN
143
              KX = 1
144
          ELSE
145
              KX = 1 - (N-1)*INCX
146
          END IF
147
          IF (INCY.GT.0) THEN
148
              KY = 1
149
          ELSE
150
              KY = 1 - (N-1)*INCY
151
          END IF
152
          JX = KX
153
          JY = KY
154
      END IF
155
*
156
*     Start the operations. In this version the elements of the array AP
157
*     are accessed sequentially with one pass through AP.
158
*
159
      KK = 1
160
      IF (LSAME(UPLO,'U')) THEN
161
*
162
*        Form  A  when upper triangle is stored in AP.
163
*
164
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
165
              DO 20 J = 1,N
166
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
167
                      TEMP1 = ALPHA*DCONJG(Y(J))
168
                      TEMP2 = DCONJG(ALPHA*X(J))
169
                      K = KK
170
                      DO 10 I = 1,J - 1
171
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
172
                          K = K + 1
173
   10                 CONTINUE
174
                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
175
     +                             DBLE(X(J)*TEMP1+Y(J)*TEMP2)
176
                  ELSE
177
                      AP(KK+J-1) = DBLE(AP(KK+J-1))
178
                  END IF
179
                  KK = KK + J
180
   20         CONTINUE
181
          ELSE
182
              DO 40 J = 1,N
183
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
184
                      TEMP1 = ALPHA*DCONJG(Y(JY))
185
                      TEMP2 = DCONJG(ALPHA*X(JX))
186
                      IX = KX
187
                      IY = KY
188
                      DO 30 K = KK,KK + J - 2
189
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
190
                          IX = IX + INCX
191
                          IY = IY + INCY
192
   30                 CONTINUE
193
                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
194
     +                             DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
195
                  ELSE
196
                      AP(KK+J-1) = DBLE(AP(KK+J-1))
197
                  END IF
198
                  JX = JX + INCX
199
                  JY = JY + INCY
200
                  KK = KK + J
201
   40         CONTINUE
202
          END IF
203
      ELSE
204
*
205
*        Form  A  when lower triangle is stored in AP.
206
*
207
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
208
              DO 60 J = 1,N
209
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
210
                      TEMP1 = ALPHA*DCONJG(Y(J))
211
                      TEMP2 = DCONJG(ALPHA*X(J))
212
                      AP(KK) = DBLE(AP(KK)) +
213
     +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
214
                      K = KK + 1
215
                      DO 50 I = J + 1,N
216
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
217
                          K = K + 1
218
   50                 CONTINUE
219
                  ELSE
220
                      AP(KK) = DBLE(AP(KK))
221
                  END IF
222
                  KK = KK + N - J + 1
223
   60         CONTINUE
224
          ELSE
225
              DO 80 J = 1,N
226
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
227
                      TEMP1 = ALPHA*DCONJG(Y(JY))
228
                      TEMP2 = DCONJG(ALPHA*X(JX))
229
                      AP(KK) = DBLE(AP(KK)) +
230
     +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
231
                      IX = JX
232
                      IY = JY
233
                      DO 70 K = KK + 1,KK + N - J
234
                          IX = IX + INCX
235
                          IY = IY + INCY
236
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
237
   70                 CONTINUE
238
                  ELSE
239
                      AP(KK) = DBLE(AP(KK))
240
                  END IF
241
                  JX = JX + INCX
242
                  JY = JY + INCY
243
                  KK = KK + N - J + 1
244
   80         CONTINUE
245
          END IF
246
      END IF
247
*
248
      RETURN
249
*
250
*     End of ZHPR2 .
251
*
252
      END