root / src / blas / strsv.f @ 7
Historique | Voir | Annoter | Télécharger (8,54 ko)
1 |
SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
INTEGER INCX,LDA,N |
4 |
CHARACTER DIAG,TRANS,UPLO |
5 |
* .. |
6 |
* .. Array Arguments .. |
7 |
REAL A(LDA,*),X(*) |
8 |
* .. |
9 |
* |
10 |
* Purpose |
11 |
* ======= |
12 |
* |
13 |
* STRSV solves one of the systems of equations |
14 |
* |
15 |
* A*x = b, or A'*x = b, |
16 |
* |
17 |
* where b and x are n element vectors and A is an n by n unit, or |
18 |
* non-unit, upper or lower triangular matrix. |
19 |
* |
20 |
* No test for singularity or near-singularity is included in this |
21 |
* routine. Such tests must be performed before calling this routine. |
22 |
* |
23 |
* Arguments |
24 |
* ========== |
25 |
* |
26 |
* UPLO - CHARACTER*1. |
27 |
* On entry, UPLO specifies whether the matrix is an upper or |
28 |
* lower triangular matrix as follows: |
29 |
* |
30 |
* UPLO = 'U' or 'u' A is an upper triangular matrix. |
31 |
* |
32 |
* UPLO = 'L' or 'l' A is a lower triangular matrix. |
33 |
* |
34 |
* Unchanged on exit. |
35 |
* |
36 |
* TRANS - CHARACTER*1. |
37 |
* On entry, TRANS specifies the equations to be solved as |
38 |
* follows: |
39 |
* |
40 |
* TRANS = 'N' or 'n' A*x = b. |
41 |
* |
42 |
* TRANS = 'T' or 't' A'*x = b. |
43 |
* |
44 |
* TRANS = 'C' or 'c' A'*x = b. |
45 |
* |
46 |
* Unchanged on exit. |
47 |
* |
48 |
* DIAG - CHARACTER*1. |
49 |
* On entry, DIAG specifies whether or not A is unit |
50 |
* triangular as follows: |
51 |
* |
52 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular. |
53 |
* |
54 |
* DIAG = 'N' or 'n' A is not assumed to be unit |
55 |
* triangular. |
56 |
* |
57 |
* Unchanged on exit. |
58 |
* |
59 |
* N - INTEGER. |
60 |
* On entry, N specifies the order of the matrix A. |
61 |
* N must be at least zero. |
62 |
* Unchanged on exit. |
63 |
* |
64 |
* A - REAL array of DIMENSION ( LDA, n ). |
65 |
* Before entry with UPLO = 'U' or 'u', the leading n by n |
66 |
* upper triangular part of the array A must contain the upper |
67 |
* triangular matrix and the strictly lower triangular part of |
68 |
* A is not referenced. |
69 |
* Before entry with UPLO = 'L' or 'l', the leading n by n |
70 |
* lower triangular part of the array A must contain the lower |
71 |
* triangular matrix and the strictly upper triangular part of |
72 |
* A is not referenced. |
73 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of |
74 |
* A are not referenced either, but are assumed to be unity. |
75 |
* Unchanged on exit. |
76 |
* |
77 |
* LDA - INTEGER. |
78 |
* On entry, LDA specifies the first dimension of A as declared |
79 |
* in the calling (sub) program. LDA must be at least |
80 |
* max( 1, n ). |
81 |
* Unchanged on exit. |
82 |
* |
83 |
* X - REAL array of dimension at least |
84 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
85 |
* Before entry, the incremented array X must contain the n |
86 |
* element right-hand side vector b. On exit, X is overwritten |
87 |
* with the solution vector x. |
88 |
* |
89 |
* INCX - INTEGER. |
90 |
* On entry, INCX specifies the increment for the elements of |
91 |
* X. INCX must not be zero. |
92 |
* Unchanged on exit. |
93 |
* |
94 |
* |
95 |
* Level 2 Blas routine. |
96 |
* |
97 |
* -- Written on 22-October-1986. |
98 |
* Jack Dongarra, Argonne National Lab. |
99 |
* Jeremy Du Croz, Nag Central Office. |
100 |
* Sven Hammarling, Nag Central Office. |
101 |
* Richard Hanson, Sandia National Labs. |
102 |
* |
103 |
* |
104 |
* .. Parameters .. |
105 |
REAL ZERO |
106 |
PARAMETER (ZERO=0.0E+0) |
107 |
* .. |
108 |
* .. Local Scalars .. |
109 |
REAL TEMP |
110 |
INTEGER I,INFO,IX,J,JX,KX |
111 |
LOGICAL NOUNIT |
112 |
* .. |
113 |
* .. External Functions .. |
114 |
LOGICAL LSAME |
115 |
EXTERNAL LSAME |
116 |
* .. |
117 |
* .. External Subroutines .. |
118 |
EXTERNAL XERBLA |
119 |
* .. |
120 |
* .. Intrinsic Functions .. |
121 |
INTRINSIC MAX |
122 |
* .. |
123 |
* |
124 |
* Test the input parameters. |
125 |
* |
126 |
INFO = 0 |
127 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
128 |
INFO = 1 |
129 |
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
130 |
+ .NOT.LSAME(TRANS,'C')) THEN |
131 |
INFO = 2 |
132 |
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
133 |
INFO = 3 |
134 |
ELSE IF (N.LT.0) THEN |
135 |
INFO = 4 |
136 |
ELSE IF (LDA.LT.MAX(1,N)) THEN |
137 |
INFO = 6 |
138 |
ELSE IF (INCX.EQ.0) THEN |
139 |
INFO = 8 |
140 |
END IF |
141 |
IF (INFO.NE.0) THEN |
142 |
CALL XERBLA('STRSV ',INFO) |
143 |
RETURN |
144 |
END IF |
145 |
* |
146 |
* Quick return if possible. |
147 |
* |
148 |
IF (N.EQ.0) RETURN |
149 |
* |
150 |
NOUNIT = LSAME(DIAG,'N') |
151 |
* |
152 |
* Set up the start point in X if the increment is not unity. This |
153 |
* will be ( N - 1 )*INCX too small for descending loops. |
154 |
* |
155 |
IF (INCX.LE.0) THEN |
156 |
KX = 1 - (N-1)*INCX |
157 |
ELSE IF (INCX.NE.1) THEN |
158 |
KX = 1 |
159 |
END IF |
160 |
* |
161 |
* Start the operations. In this version the elements of A are |
162 |
* accessed sequentially with one pass through A. |
163 |
* |
164 |
IF (LSAME(TRANS,'N')) THEN |
165 |
* |
166 |
* Form x := inv( A )*x. |
167 |
* |
168 |
IF (LSAME(UPLO,'U')) THEN |
169 |
IF (INCX.EQ.1) THEN |
170 |
DO 20 J = N,1,-1 |
171 |
IF (X(J).NE.ZERO) THEN |
172 |
IF (NOUNIT) X(J) = X(J)/A(J,J) |
173 |
TEMP = X(J) |
174 |
DO 10 I = J - 1,1,-1 |
175 |
X(I) = X(I) - TEMP*A(I,J) |
176 |
10 CONTINUE |
177 |
END IF |
178 |
20 CONTINUE |
179 |
ELSE |
180 |
JX = KX + (N-1)*INCX |
181 |
DO 40 J = N,1,-1 |
182 |
IF (X(JX).NE.ZERO) THEN |
183 |
IF (NOUNIT) X(JX) = X(JX)/A(J,J) |
184 |
TEMP = X(JX) |
185 |
IX = JX |
186 |
DO 30 I = J - 1,1,-1 |
187 |
IX = IX - INCX |
188 |
X(IX) = X(IX) - TEMP*A(I,J) |
189 |
30 CONTINUE |
190 |
END IF |
191 |
JX = JX - INCX |
192 |
40 CONTINUE |
193 |
END IF |
194 |
ELSE |
195 |
IF (INCX.EQ.1) THEN |
196 |
DO 60 J = 1,N |
197 |
IF (X(J).NE.ZERO) THEN |
198 |
IF (NOUNIT) X(J) = X(J)/A(J,J) |
199 |
TEMP = X(J) |
200 |
DO 50 I = J + 1,N |
201 |
X(I) = X(I) - TEMP*A(I,J) |
202 |
50 CONTINUE |
203 |
END IF |
204 |
60 CONTINUE |
205 |
ELSE |
206 |
JX = KX |
207 |
DO 80 J = 1,N |
208 |
IF (X(JX).NE.ZERO) THEN |
209 |
IF (NOUNIT) X(JX) = X(JX)/A(J,J) |
210 |
TEMP = X(JX) |
211 |
IX = JX |
212 |
DO 70 I = J + 1,N |
213 |
IX = IX + INCX |
214 |
X(IX) = X(IX) - TEMP*A(I,J) |
215 |
70 CONTINUE |
216 |
END IF |
217 |
JX = JX + INCX |
218 |
80 CONTINUE |
219 |
END IF |
220 |
END IF |
221 |
ELSE |
222 |
* |
223 |
* Form x := inv( A' )*x. |
224 |
* |
225 |
IF (LSAME(UPLO,'U')) THEN |
226 |
IF (INCX.EQ.1) THEN |
227 |
DO 100 J = 1,N |
228 |
TEMP = X(J) |
229 |
DO 90 I = 1,J - 1 |
230 |
TEMP = TEMP - A(I,J)*X(I) |
231 |
90 CONTINUE |
232 |
IF (NOUNIT) TEMP = TEMP/A(J,J) |
233 |
X(J) = TEMP |
234 |
100 CONTINUE |
235 |
ELSE |
236 |
JX = KX |
237 |
DO 120 J = 1,N |
238 |
TEMP = X(JX) |
239 |
IX = KX |
240 |
DO 110 I = 1,J - 1 |
241 |
TEMP = TEMP - A(I,J)*X(IX) |
242 |
IX = IX + INCX |
243 |
110 CONTINUE |
244 |
IF (NOUNIT) TEMP = TEMP/A(J,J) |
245 |
X(JX) = TEMP |
246 |
JX = JX + INCX |
247 |
120 CONTINUE |
248 |
END IF |
249 |
ELSE |
250 |
IF (INCX.EQ.1) THEN |
251 |
DO 140 J = N,1,-1 |
252 |
TEMP = X(J) |
253 |
DO 130 I = N,J + 1,-1 |
254 |
TEMP = TEMP - A(I,J)*X(I) |
255 |
130 CONTINUE |
256 |
IF (NOUNIT) TEMP = TEMP/A(J,J) |
257 |
X(J) = TEMP |
258 |
140 CONTINUE |
259 |
ELSE |
260 |
KX = KX + (N-1)*INCX |
261 |
JX = KX |
262 |
DO 160 J = N,1,-1 |
263 |
TEMP = X(JX) |
264 |
IX = KX |
265 |
DO 150 I = N,J + 1,-1 |
266 |
TEMP = TEMP - A(I,J)*X(IX) |
267 |
IX = IX - INCX |
268 |
150 CONTINUE |
269 |
IF (NOUNIT) TEMP = TEMP/A(J,J) |
270 |
X(JX) = TEMP |
271 |
JX = JX - INCX |
272 |
160 CONTINUE |
273 |
END IF |
274 |
END IF |
275 |
END IF |
276 |
* |
277 |
RETURN |
278 |
* |
279 |
* End of STRSV . |
280 |
* |
281 |
END |