root / src / blas / sspr.f @ 7
Historique | Voir | Annoter | Télécharger (5,73 ko)
1 |
SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP) |
---|---|
2 |
* .. Scalar Arguments .. |
3 |
REAL ALPHA |
4 |
INTEGER INCX,N |
5 |
CHARACTER UPLO |
6 |
* .. |
7 |
* .. Array Arguments .. |
8 |
REAL AP(*),X(*) |
9 |
* .. |
10 |
* |
11 |
* Purpose |
12 |
* ======= |
13 |
* |
14 |
* SSPR performs the symmetric rank 1 operation |
15 |
* |
16 |
* A := alpha*x*x' + A, |
17 |
* |
18 |
* where alpha is a real scalar, x is an n element vector and A is an |
19 |
* n by n symmetric matrix, supplied in packed form. |
20 |
* |
21 |
* Arguments |
22 |
* ========== |
23 |
* |
24 |
* UPLO - CHARACTER*1. |
25 |
* On entry, UPLO specifies whether the upper or lower |
26 |
* triangular part of the matrix A is supplied in the packed |
27 |
* array AP as follows: |
28 |
* |
29 |
* UPLO = 'U' or 'u' The upper triangular part of A is |
30 |
* supplied in AP. |
31 |
* |
32 |
* UPLO = 'L' or 'l' The lower triangular part of A is |
33 |
* supplied in AP. |
34 |
* |
35 |
* Unchanged on exit. |
36 |
* |
37 |
* N - INTEGER. |
38 |
* On entry, N specifies the order of the matrix A. |
39 |
* N must be at least zero. |
40 |
* Unchanged on exit. |
41 |
* |
42 |
* ALPHA - REAL . |
43 |
* On entry, ALPHA specifies the scalar alpha. |
44 |
* Unchanged on exit. |
45 |
* |
46 |
* X - REAL array of dimension at least |
47 |
* ( 1 + ( n - 1 )*abs( INCX ) ). |
48 |
* Before entry, the incremented array X must contain the n |
49 |
* element vector x. |
50 |
* Unchanged on exit. |
51 |
* |
52 |
* INCX - INTEGER. |
53 |
* On entry, INCX specifies the increment for the elements of |
54 |
* X. INCX must not be zero. |
55 |
* Unchanged on exit. |
56 |
* |
57 |
* AP - REAL array of DIMENSION at least |
58 |
* ( ( n*( n + 1 ) )/2 ). |
59 |
* Before entry with UPLO = 'U' or 'u', the array AP must |
60 |
* contain the upper triangular part of the symmetric matrix |
61 |
* packed sequentially, column by column, so that AP( 1 ) |
62 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
63 |
* and a( 2, 2 ) respectively, and so on. On exit, the array |
64 |
* AP is overwritten by the upper triangular part of the |
65 |
* updated matrix. |
66 |
* Before entry with UPLO = 'L' or 'l', the array AP must |
67 |
* contain the lower triangular part of the symmetric matrix |
68 |
* packed sequentially, column by column, so that AP( 1 ) |
69 |
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
70 |
* and a( 3, 1 ) respectively, and so on. On exit, the array |
71 |
* AP is overwritten by the lower triangular part of the |
72 |
* updated matrix. |
73 |
* |
74 |
* |
75 |
* Level 2 Blas routine. |
76 |
* |
77 |
* -- Written on 22-October-1986. |
78 |
* Jack Dongarra, Argonne National Lab. |
79 |
* Jeremy Du Croz, Nag Central Office. |
80 |
* Sven Hammarling, Nag Central Office. |
81 |
* Richard Hanson, Sandia National Labs. |
82 |
* |
83 |
* |
84 |
* .. Parameters .. |
85 |
REAL ZERO |
86 |
PARAMETER (ZERO=0.0E+0) |
87 |
* .. |
88 |
* .. Local Scalars .. |
89 |
REAL TEMP |
90 |
INTEGER I,INFO,IX,J,JX,K,KK,KX |
91 |
* .. |
92 |
* .. External Functions .. |
93 |
LOGICAL LSAME |
94 |
EXTERNAL LSAME |
95 |
* .. |
96 |
* .. External Subroutines .. |
97 |
EXTERNAL XERBLA |
98 |
* .. |
99 |
* |
100 |
* Test the input parameters. |
101 |
* |
102 |
INFO = 0 |
103 |
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
104 |
INFO = 1 |
105 |
ELSE IF (N.LT.0) THEN |
106 |
INFO = 2 |
107 |
ELSE IF (INCX.EQ.0) THEN |
108 |
INFO = 5 |
109 |
END IF |
110 |
IF (INFO.NE.0) THEN |
111 |
CALL XERBLA('SSPR ',INFO) |
112 |
RETURN |
113 |
END IF |
114 |
* |
115 |
* Quick return if possible. |
116 |
* |
117 |
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN |
118 |
* |
119 |
* Set the start point in X if the increment is not unity. |
120 |
* |
121 |
IF (INCX.LE.0) THEN |
122 |
KX = 1 - (N-1)*INCX |
123 |
ELSE IF (INCX.NE.1) THEN |
124 |
KX = 1 |
125 |
END IF |
126 |
* |
127 |
* Start the operations. In this version the elements of the array AP |
128 |
* are accessed sequentially with one pass through AP. |
129 |
* |
130 |
KK = 1 |
131 |
IF (LSAME(UPLO,'U')) THEN |
132 |
* |
133 |
* Form A when upper triangle is stored in AP. |
134 |
* |
135 |
IF (INCX.EQ.1) THEN |
136 |
DO 20 J = 1,N |
137 |
IF (X(J).NE.ZERO) THEN |
138 |
TEMP = ALPHA*X(J) |
139 |
K = KK |
140 |
DO 10 I = 1,J |
141 |
AP(K) = AP(K) + X(I)*TEMP |
142 |
K = K + 1 |
143 |
10 CONTINUE |
144 |
END IF |
145 |
KK = KK + J |
146 |
20 CONTINUE |
147 |
ELSE |
148 |
JX = KX |
149 |
DO 40 J = 1,N |
150 |
IF (X(JX).NE.ZERO) THEN |
151 |
TEMP = ALPHA*X(JX) |
152 |
IX = KX |
153 |
DO 30 K = KK,KK + J - 1 |
154 |
AP(K) = AP(K) + X(IX)*TEMP |
155 |
IX = IX + INCX |
156 |
30 CONTINUE |
157 |
END IF |
158 |
JX = JX + INCX |
159 |
KK = KK + J |
160 |
40 CONTINUE |
161 |
END IF |
162 |
ELSE |
163 |
* |
164 |
* Form A when lower triangle is stored in AP. |
165 |
* |
166 |
IF (INCX.EQ.1) THEN |
167 |
DO 60 J = 1,N |
168 |
IF (X(J).NE.ZERO) THEN |
169 |
TEMP = ALPHA*X(J) |
170 |
K = KK |
171 |
DO 50 I = J,N |
172 |
AP(K) = AP(K) + X(I)*TEMP |
173 |
K = K + 1 |
174 |
50 CONTINUE |
175 |
END IF |
176 |
KK = KK + N - J + 1 |
177 |
60 CONTINUE |
178 |
ELSE |
179 |
JX = KX |
180 |
DO 80 J = 1,N |
181 |
IF (X(JX).NE.ZERO) THEN |
182 |
TEMP = ALPHA*X(JX) |
183 |
IX = JX |
184 |
DO 70 K = KK,KK + N - J |
185 |
AP(K) = AP(K) + X(IX)*TEMP |
186 |
IX = IX + INCX |
187 |
70 CONTINUE |
188 |
END IF |
189 |
JX = JX + INCX |
190 |
KK = KK + N - J + 1 |
191 |
80 CONTINUE |
192 |
END IF |
193 |
END IF |
194 |
* |
195 |
RETURN |
196 |
* |
197 |
* End of SSPR . |
198 |
* |
199 |
END |