Statistiques
| Révision :

root / src / blas / dsyr.f @ 7

Historique | Voir | Annoter | Télécharger (5,72 ko)

1
      SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
2
*     .. Scalar Arguments ..
3
      DOUBLE PRECISION ALPHA
4
      INTEGER INCX,LDA,N
5
      CHARACTER UPLO
6
*     ..
7
*     .. Array Arguments ..
8
      DOUBLE PRECISION A(LDA,*),X(*)
9
*     ..
10
*
11
*  Purpose
12
*  =======
13
*
14
*  DSYR   performs the symmetric rank 1 operation
15
*
16
*     A := alpha*x*x' + A,
17
*
18
*  where alpha is a real scalar, x is an n element vector and A is an
19
*  n by n symmetric matrix.
20
*
21
*  Arguments
22
*  ==========
23
*
24
*  UPLO   - CHARACTER*1.
25
*           On entry, UPLO specifies whether the upper or lower
26
*           triangular part of the array A is to be referenced as
27
*           follows:
28
*
29
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30
*                                  is to be referenced.
31
*
32
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33
*                                  is to be referenced.
34
*
35
*           Unchanged on exit.
36
*
37
*  N      - INTEGER.
38
*           On entry, N specifies the order of the matrix A.
39
*           N must be at least zero.
40
*           Unchanged on exit.
41
*
42
*  ALPHA  - DOUBLE PRECISION.
43
*           On entry, ALPHA specifies the scalar alpha.
44
*           Unchanged on exit.
45
*
46
*  X      - DOUBLE PRECISION array of dimension at least
47
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48
*           Before entry, the incremented array X must contain the n
49
*           element vector x.
50
*           Unchanged on exit.
51
*
52
*  INCX   - INTEGER.
53
*           On entry, INCX specifies the increment for the elements of
54
*           X. INCX must not be zero.
55
*           Unchanged on exit.
56
*
57
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
58
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
59
*           upper triangular part of the array A must contain the upper
60
*           triangular part of the symmetric matrix and the strictly
61
*           lower triangular part of A is not referenced. On exit, the
62
*           upper triangular part of the array A is overwritten by the
63
*           upper triangular part of the updated matrix.
64
*           Before entry with UPLO = 'L' or 'l', the leading n by n
65
*           lower triangular part of the array A must contain the lower
66
*           triangular part of the symmetric matrix and the strictly
67
*           upper triangular part of A is not referenced. On exit, the
68
*           lower triangular part of the array A is overwritten by the
69
*           lower triangular part of the updated matrix.
70
*
71
*  LDA    - INTEGER.
72
*           On entry, LDA specifies the first dimension of A as declared
73
*           in the calling (sub) program. LDA must be at least
74
*           max( 1, n ).
75
*           Unchanged on exit.
76
*
77
*
78
*  Level 2 Blas routine.
79
*
80
*  -- Written on 22-October-1986.
81
*     Jack Dongarra, Argonne National Lab.
82
*     Jeremy Du Croz, Nag Central Office.
83
*     Sven Hammarling, Nag Central Office.
84
*     Richard Hanson, Sandia National Labs.
85
*
86
*
87
*     .. Parameters ..
88
      DOUBLE PRECISION ZERO
89
      PARAMETER (ZERO=0.0D+0)
90
*     ..
91
*     .. Local Scalars ..
92
      DOUBLE PRECISION TEMP
93
      INTEGER I,INFO,IX,J,JX,KX
94
*     ..
95
*     .. External Functions ..
96
      LOGICAL LSAME
97
      EXTERNAL LSAME
98
*     ..
99
*     .. External Subroutines ..
100
      EXTERNAL XERBLA
101
*     ..
102
*     .. Intrinsic Functions ..
103
      INTRINSIC MAX
104
*     ..
105
*
106
*     Test the input parameters.
107
*
108
      INFO = 0
109
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
110
          INFO = 1
111
      ELSE IF (N.LT.0) THEN
112
          INFO = 2
113
      ELSE IF (INCX.EQ.0) THEN
114
          INFO = 5
115
      ELSE IF (LDA.LT.MAX(1,N)) THEN
116
          INFO = 7
117
      END IF
118
      IF (INFO.NE.0) THEN
119
          CALL XERBLA('DSYR  ',INFO)
120
          RETURN
121
      END IF
122
*
123
*     Quick return if possible.
124
*
125
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
126
*
127
*     Set the start point in X if the increment is not unity.
128
*
129
      IF (INCX.LE.0) THEN
130
          KX = 1 - (N-1)*INCX
131
      ELSE IF (INCX.NE.1) THEN
132
          KX = 1
133
      END IF
134
*
135
*     Start the operations. In this version the elements of A are
136
*     accessed sequentially with one pass through the triangular part
137
*     of A.
138
*
139
      IF (LSAME(UPLO,'U')) THEN
140
*
141
*        Form  A  when A is stored in upper triangle.
142
*
143
          IF (INCX.EQ.1) THEN
144
              DO 20 J = 1,N
145
                  IF (X(J).NE.ZERO) THEN
146
                      TEMP = ALPHA*X(J)
147
                      DO 10 I = 1,J
148
                          A(I,J) = A(I,J) + X(I)*TEMP
149
   10                 CONTINUE
150
                  END IF
151
   20         CONTINUE
152
          ELSE
153
              JX = KX
154
              DO 40 J = 1,N
155
                  IF (X(JX).NE.ZERO) THEN
156
                      TEMP = ALPHA*X(JX)
157
                      IX = KX
158
                      DO 30 I = 1,J
159
                          A(I,J) = A(I,J) + X(IX)*TEMP
160
                          IX = IX + INCX
161
   30                 CONTINUE
162
                  END IF
163
                  JX = JX + INCX
164
   40         CONTINUE
165
          END IF
166
      ELSE
167
*
168
*        Form  A  when A is stored in lower triangle.
169
*
170
          IF (INCX.EQ.1) THEN
171
              DO 60 J = 1,N
172
                  IF (X(J).NE.ZERO) THEN
173
                      TEMP = ALPHA*X(J)
174
                      DO 50 I = J,N
175
                          A(I,J) = A(I,J) + X(I)*TEMP
176
   50                 CONTINUE
177
                  END IF
178
   60         CONTINUE
179
          ELSE
180
              JX = KX
181
              DO 80 J = 1,N
182
                  IF (X(JX).NE.ZERO) THEN
183
                      TEMP = ALPHA*X(JX)
184
                      IX = JX
185
                      DO 70 I = J,N
186
                          A(I,J) = A(I,J) + X(IX)*TEMP
187
                          IX = IX + INCX
188
   70                 CONTINUE
189
                  END IF
190
                  JX = JX + INCX
191
   80         CONTINUE
192
          END IF
193
      END IF
194
*
195
      RETURN
196
*
197
*     End of DSYR  .
198
*
199
      END