root / src / Calc_baker_allGeomF.f90 @ 7
Historique | Voir | Annoter | Télécharger (9,76 ko)
1 |
SUBROUTINE Calc_baker_allGeomF() |
---|---|
2 |
! |
3 |
! This subroutine analyses a geometry to construct the baker |
4 |
! delocalized internal coordinates |
5 |
! v1.0 |
6 |
! We use only one geometry |
7 |
! |
8 |
Use Path_module, only : Pi,a0,BMat_BakerT,Nat,NCoord,XyzGeomI,NGeomI,UMatF, & |
9 |
NPrim,BTransInvF,IntCoordI,Coordinate,CurrentCoord, & |
10 |
ScanCoord,BprimT,BBT,BBT_inv,XprimitiveF,Symmetry_elimination, & |
11 |
NgeomF,XyzGeomF |
12 |
! BMat_BakerT(3*Nat,NCoord), NCoord=3*Nat or NFree=3*Nat-6-Symmetry_elimination |
13 |
! depending upon the coordinate choice. IntCoordI(NGeomI,NCoord) where |
14 |
! UMatF(NGeomI,NPrim,NCoord), NCoord number of vectors in UMat matrix, i.e. NCoord |
15 |
! Baker coordinates. NPrim is the number of primitive internal coordinates. |
16 |
|
17 |
Use Io_module |
18 |
IMPLICIT NONE |
19 |
|
20 |
REAL(KREAL), ALLOCATABLE :: Geom(:,:) !(3,Nat) |
21 |
! NPrim is the number of primitive coordinates and NCoord is the number |
22 |
! of internal coordinates. BMat is actually (NPrim,3*Nat). |
23 |
REAL(KREAL), ALLOCATABLE :: GMat(:,:) !(NPrim,NPrim) |
24 |
! EigVec(..) contains ALL eigevectors of BMat times BprimT, NOT only Baker Coordinate vectors. |
25 |
REAL(KREAL), ALLOCATABLE :: EigVec(:,:), EigVal(:) ! EigVec(NPrim,NPrim) |
26 |
REAL(KREAL), ALLOCATABLE :: x(:), y(:), z(:) |
27 |
REAL(KREAL), ALLOCATABLE :: XPrimRef(:) ! NPrim |
28 |
INTEGER(KINT) :: IGeom |
29 |
|
30 |
real(KREAL) :: vx,vy,vz,dist, Norm |
31 |
real(KREAL) :: vx1,vy1,vz1,norm1 |
32 |
real(KREAL) :: vx2,vy2,vz2,norm2 |
33 |
real(KREAL) :: vx3,vy3,vz3,norm3 |
34 |
real(KREAL) :: vx4,vy4,vz4,norm4 |
35 |
real(KREAL) :: vx5,vy5,vz5,norm5 |
36 |
real(KREAL) :: val,val_d, Q, T |
37 |
|
38 |
INTEGER(KINT) :: I,J, n1,n2,n3,n4,IAt,IL,JL,IFrag,ITmp, K, KMax |
39 |
INTEGER(KINT) :: I0, IOld, IAtTmp, Izm, JAt, Kat, Lat, L, NOUT |
40 |
|
41 |
REAL(KREAL) :: sAngleIatIKat, sAngleIIatLat |
42 |
REAL(KREAL) :: DiheTmp |
43 |
|
44 |
LOGICAL :: debug, bond, AddPrimitiveCoord, FAIL |
45 |
LOGICAL :: DebugPFL |
46 |
|
47 |
INTERFACE |
48 |
function valid(string) result (isValid) |
49 |
CHARACTER(*), intent(in) :: string |
50 |
logical :: isValid |
51 |
END function VALID |
52 |
|
53 |
FUNCTION angle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
54 |
use Path_module, only : Pi,KINT, KREAL |
55 |
real(KREAL) :: v1x,v1y,v1z,norm1 |
56 |
real(KREAL) :: v2x,v2y,v2z,norm2 |
57 |
real(KREAL) :: angle |
58 |
END FUNCTION ANGLE |
59 |
|
60 |
FUNCTION angle_d(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2,v3x,v3y,v3z,norm3) |
61 |
use Path_module, only : Pi,KINT, KREAL |
62 |
real(KREAL) :: v1x,v1y,v1z,norm1 |
63 |
real(KREAL) :: v2x,v2y,v2z,norm2 |
64 |
real(KREAL) :: v3x,v3y,v3z,norm3 |
65 |
real(KREAL) :: angle_d,ca,sa |
66 |
END FUNCTION ANGLE_D |
67 |
|
68 |
|
69 |
|
70 |
SUBROUTINE Calc_Xprim(nat,x,y,z,Coordinate,NPrim,XPrimitive,XPrimRef) |
71 |
! |
72 |
! This subroutine uses the description of a list of Coordinates |
73 |
! to compute the values of the coordinates for a given geometry. |
74 |
! |
75 |
!!!!!!!!!! |
76 |
! Input: |
77 |
! Na: INTEGER, Number of atoms |
78 |
! x,y,z(Na): REAL, cartesian coordinates of the considered geometry |
79 |
! Coordinate (Pointer(ListCoord)): description of the wanted coordiantes |
80 |
! NPrim, INTEGER: Number of coordinates to compute |
81 |
! |
82 |
! Optional: XPrimRef(NPrim) REAL: array that contains coordinates values for |
83 |
! a former geometry. Useful for Dihedral angles evolution... |
84 |
|
85 |
!!!!!!!!!!! |
86 |
! Output: |
87 |
! XPrimimite(NPrim) REAL: array that will contain the values of the coordinates |
88 |
! |
89 |
!!!!!!!!! |
90 |
|
91 |
Use VarTypes |
92 |
Use Io_module |
93 |
Use Path_module, only : pi |
94 |
|
95 |
IMPLICIT NONE |
96 |
|
97 |
Type (ListCoord), POINTER :: Coordinate |
98 |
INTEGER(KINT), INTENT(IN) :: Nat,NPrim |
99 |
REAL(KREAL), INTENT(IN) :: x(Nat), y(Nat), z(Nat) |
100 |
REAL(KREAL), INTENT(IN), OPTIONAL :: XPrimRef(NPrim) |
101 |
REAL(KREAL), INTENT(OUT) :: XPrimitive(NPrim) |
102 |
|
103 |
END SUBROUTINE CALC_XPRIM |
104 |
END INTERFACE |
105 |
|
106 |
|
107 |
|
108 |
|
109 |
debug=valid("Calc_baker_allGeomF") |
110 |
debugPFL=valid("bakerPFL") |
111 |
if (debug) WRITE(*,*) '============ Entering Calc_baker_allGeomF =============' |
112 |
|
113 |
ALLOCATE(Geom(3,Nat),x(Nat),y(Nat),z(Nat)) |
114 |
ALLOCATE(XPrimRef(NPrim)) |
115 |
|
116 |
! Now calculating values of all primitive bonds for all final geometries: |
117 |
DO IGeom=1, NGeomF |
118 |
x(1:Nat) = XyzGeomF(IGeom,1,1:Nat) |
119 |
y(1:Nat) = XyzGeomF(IGeom,2,1:Nat) |
120 |
z(1:Nat) = XyzGeomF(IGeom,3,1:Nat) |
121 |
XPrimREf=XPrimitiveF(IGeom,:) |
122 |
Call Calc_XPrim(nat,x,y,z,Coordinate,NPrim,XPrimitiveF(IGeom,:),XPrimRef) |
123 |
! ScanCoord=>Coordinate |
124 |
! I=0 ! index for the NPrim (NPrim is the number of primitive coordinates). |
125 |
! DO WHILE (Associated(ScanCoord%next)) |
126 |
! I=I+1 |
127 |
! SELECT CASE (ScanCoord%Type) |
128 |
! CASE ('BOND') |
129 |
! Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
130 |
! XprimitiveF(IGeom,I) = Norm2 |
131 |
! CASE ('ANGLE') |
132 |
! Call vecteur(ScanCoord%At2,ScanCoord%At3,x,y,z,vx1,vy1,vz1,Norm1) |
133 |
! Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
134 |
! XprimitiveF(IGeom,I) = angle(vx1,vy1,vz1,Norm1,vx2,vy2,vz2,Norm2)*Pi/180. |
135 |
! CASE ('DIHEDRAL') |
136 |
! Call vecteur(ScanCoord%At3,ScanCoord%At2,x,y,z,vx2,vy2,vz2,Norm2) |
137 |
! Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx1,vy1,vz1,Norm1) |
138 |
! Call vecteur(ScanCoord%At3,ScanCoord%At4,x,y,z,vx3,vy3,vz3,Norm3) |
139 |
! Call produit_vect(vx3,vy3,vz3,norm3,vx2,vy2,vz2,norm2, & |
140 |
! vx5,vy5,vz5,norm5) |
141 |
! Call produit_vect(vx1,vy1,vz1,norm1,vx2,vy2,vz2,norm2, & |
142 |
! vx4,vy4,vz4,norm4) |
143 |
! DiheTmp= angle_d(vx4,vy4,vz4,norm4,vx5,vy5,vz5,norm5, & |
144 |
! vx2,vy2,vz2,norm2) |
145 |
! XprimitiveF(IGeom,I) = DiheTmp*Pi/180. |
146 |
!! We treat large dihedral angles differently as +180=-180 mathematically and physically |
147 |
!! but this causes lots of troubles when converting baker to cart. |
148 |
!! So we ensure that large dihedral angles always have the same sign |
149 |
! if (abs(ScanCoord%SignDihedral).NE.1) THEN |
150 |
! ScanCoord%SignDihedral=Int(Sign(1.d0,DiheTmp)) |
151 |
! ELSE |
152 |
! If ((abs(DiheTmp).GE.170.D0).AND.(Sign(1.,DiheTmp)*ScanCoord%SignDihedral<0)) THEN |
153 |
! XprimitiveF(IGeom,I) = DiheTmp*Pi/180.+ ScanCoord%SignDihedral*2.*Pi |
154 |
! END IF |
155 |
! END IF |
156 |
! END SELECT |
157 |
! ScanCoord => ScanCoord%next |
158 |
! END DO ! matches DO WHILE (Associated(ScanCoord%next)) |
159 |
END DO ! matches DO IGeom=1, NGeomF |
160 |
|
161 |
ALLOCATE(BprimT(3*Nat,NPrim)) |
162 |
ALLOCATE(Gmat(NPrim,NPrim)) |
163 |
ALLOCATE(EigVal(NPrim),EigVec(NPrim,NPrim)) |
164 |
ALLOCATE(BBT(NCoord,NCoord)) |
165 |
ALLOCATE(BBT_inv(NCoord,NCoord)) |
166 |
BTransInvF = 0.d0 |
167 |
|
168 |
DO IGeom=1, NGeomF |
169 |
Geom(1,:)=XyzGeomF(IGeom,1,1:Nat) ! XyzGeomI(NGeomI,3,Nat) |
170 |
Geom(2,:)=XyzGeomF(IGeom,2,1:Nat) |
171 |
Geom(3,:)=XyzGeomF(IGeom,3,1:Nat) |
172 |
|
173 |
BprimT=0.d0 |
174 |
ScanCoord=>Coordinate |
175 |
I=0 |
176 |
DO WHILE (Associated(ScanCoord%next)) |
177 |
I=I+1 |
178 |
SELECT CASE (ScanCoord%Type) |
179 |
CASE ('BOND') |
180 |
CALL CONSTRAINTS_BONDLENGTH_DER(Nat,ScanCoord%at1,ScanCoord%AT2, & |
181 |
Geom,BprimT(1,I)) |
182 |
CASE ('ANGLE') |
183 |
CALL CONSTRAINTS_BONDANGLE_DER(Nat,ScanCoord%At1,ScanCoord%AT2, & |
184 |
ScanCoord%At3,Geom,BprimT(1,I)) |
185 |
CASE ('DIHEDRAL') |
186 |
CALL CONSTRAINTS_TORSION_DER2(Nat,ScanCoord%At1,ScanCoord%AT2, & |
187 |
ScanCoord%At3,ScanCoord%At4,Geom,BprimT(1,I)) |
188 |
END SELECT |
189 |
ScanCoord => ScanCoord%next |
190 |
END DO |
191 |
|
192 |
! BprimT(3*Nat,NPrim) |
193 |
! We now compute G=B(BT) matrix |
194 |
GMat=0.d0 |
195 |
DO I=1,NPrim |
196 |
DO J=1,3*Nat |
197 |
GMat(:,I)=Gmat(:,I)+BprimT(J,:)*BprimT(J,I) !*1.d0/mass(atome(int(K/3.d0))) |
198 |
END DO |
199 |
END DO |
200 |
|
201 |
! Diagonalize G |
202 |
EigVal=0.d0 |
203 |
EigVec=0.d0 |
204 |
Call Jacobi(GMat,NPrim,EigVal,EigVec,NPrim) |
205 |
Call Trie(NPrim,EigVal,EigVec,NPrim) |
206 |
DO I=1,NPrim |
207 |
!WRITE(*,'(1X,"Vector ",I3,": e=",F8.3)') I,EigVal(i) |
208 |
!WRITE(*,'(20(1X,F8.4))') EigVec(1:min(20,NPrim),I) |
209 |
END DO |
210 |
|
211 |
! UMatF is nonredundant vector set, i.e. set of eigenvectors of BB^T |
212 |
! corresponding to eigenvalues > zero. |
213 |
! BMat_BakerT(3*Nat,NCoord), allocated in Path.f90, |
214 |
! NCoord=3*Nat-6 |
215 |
BMat_BakerT = 0.d0 |
216 |
J=0 |
217 |
DO I=1,NPrim |
218 |
IF (abs(eigval(I))>=1e-6) THEN |
219 |
J=J+1 |
220 |
DO K=1,NPrim |
221 |
! BprimT is transpose of B^prim. |
222 |
! B = UMatF^T B^prim, B^T = (B^prim)^T UMatF |
223 |
BMat_BakerT(:,J)=BMat_BakerT(:,J)+BprimT(:,K)*Eigvec(K,I) |
224 |
END DO |
225 |
IF(J .GT. 3*Nat-6) THEN |
226 |
WRITE(*,*) 'Number of vectors in Eigvec with eigval .GT. 1e-6(=UMatF) (=' & |
227 |
,J,') exceeded 3*Nat-6=',3*Nat-6, & |
228 |
'Stopping the calculation.' |
229 |
STOP |
230 |
END IF |
231 |
UMatF(IGeom,:,J) = Eigvec(:,I) |
232 |
END IF |
233 |
END DO |
234 |
|
235 |
!!!!!!!!!!!!!!!!!!!! |
236 |
! |
237 |
! Debug purposes |
238 |
! |
239 |
if (debugPFL) THEN |
240 |
UMatF(IGeom,:,:)=0. |
241 |
DO J=1,3*Nat-6 |
242 |
UMatF(IGeom,J,J)=1. |
243 |
END DO |
244 |
END IF |
245 |
|
246 |
|
247 |
!DO I=1, NPrim ! This loop is not needed because we already have IntCoordF |
248 |
! from interpolation. |
249 |
! Transpose of UMatF is needed below, that is why UMatF(IGeom,I,:). |
250 |
! IntCoordF(IGeom,:) = IntCoordF(IGeom,:) + UMat(IGeom,I,:)*XprimitiveF(IGeom,I) |
251 |
!END DO |
252 |
|
253 |
! Calculation of BTransInvF starts here: |
254 |
! Calculation of BBT(3*Nat-6,3*Nat-6)=BB^T: |
255 |
! BMat_BakerT(3*Nat,NCoord) is Transpose of B = UMatF^TB^prim |
256 |
|
257 |
BBT = 0.d0 |
258 |
DO I=1, NCoord |
259 |
DO J=1, 3*Nat |
260 |
! BBT(:,I) forms BB^T |
261 |
BBT(:,I) = BBT(:,I) + BMat_BakerT(J,:)*BMat_BakerT(J,I) |
262 |
END DO |
263 |
END DO |
264 |
|
265 |
Call GenInv(NCoord,BBT,BBT_inv,NCoord) ! GenInv is in Mat_util.f90 |
266 |
|
267 |
! Calculation of (B^T)^-1 = (BB^T)^-1B: |
268 |
DO I=1, 3*Nat |
269 |
DO J=1, NCoord |
270 |
BTransInvF(IGeom,:,I) = BTransInvF(IGeom,:,I) + BBT_inv(:,J)*BMat_BakerT(I,J) |
271 |
END DO |
272 |
END DO |
273 |
|
274 |
END DO !matches DO IGeom=1, NGeomF |
275 |
|
276 |
DEALLOCATE(BBT,BBT_inv,BprimT,GMat,EigVal,EigVec) |
277 |
DEALLOCATE(Geom,x,y,z,XprimRef) |
278 |
|
279 |
IF (debug) WRITE(*,*) "DBG Calc_baker_allGeomF over." |
280 |
END SUBROUTINE Calc_baker_allGeomF |