root / src / blas / zhbmv.f @ 7
Historique | Voir | Annoter | Télécharger (9,53 ko)
1 | 1 | equemene | SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | DOUBLE COMPLEX ALPHA,BETA |
4 | 1 | equemene | INTEGER INCX,INCY,K,LDA,N |
5 | 1 | equemene | CHARACTER UPLO |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | DOUBLE COMPLEX A(LDA,*),X(*),Y(*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * ZHBMV performs the matrix-vector operation |
15 | 1 | equemene | * |
16 | 1 | equemene | * y := alpha*A*x + beta*y, |
17 | 1 | equemene | * |
18 | 1 | equemene | * where alpha and beta are scalars, x and y are n element vectors and |
19 | 1 | equemene | * A is an n by n hermitian band matrix, with k super-diagonals. |
20 | 1 | equemene | * |
21 | 1 | equemene | * Arguments |
22 | 1 | equemene | * ========== |
23 | 1 | equemene | * |
24 | 1 | equemene | * UPLO - CHARACTER*1. |
25 | 1 | equemene | * On entry, UPLO specifies whether the upper or lower |
26 | 1 | equemene | * triangular part of the band matrix A is being supplied as |
27 | 1 | equemene | * follows: |
28 | 1 | equemene | * |
29 | 1 | equemene | * UPLO = 'U' or 'u' The upper triangular part of A is |
30 | 1 | equemene | * being supplied. |
31 | 1 | equemene | * |
32 | 1 | equemene | * UPLO = 'L' or 'l' The lower triangular part of A is |
33 | 1 | equemene | * being supplied. |
34 | 1 | equemene | * |
35 | 1 | equemene | * Unchanged on exit. |
36 | 1 | equemene | * |
37 | 1 | equemene | * N - INTEGER. |
38 | 1 | equemene | * On entry, N specifies the order of the matrix A. |
39 | 1 | equemene | * N must be at least zero. |
40 | 1 | equemene | * Unchanged on exit. |
41 | 1 | equemene | * |
42 | 1 | equemene | * K - INTEGER. |
43 | 1 | equemene | * On entry, K specifies the number of super-diagonals of the |
44 | 1 | equemene | * matrix A. K must satisfy 0 .le. K. |
45 | 1 | equemene | * Unchanged on exit. |
46 | 1 | equemene | * |
47 | 1 | equemene | * ALPHA - COMPLEX*16 . |
48 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
49 | 1 | equemene | * Unchanged on exit. |
50 | 1 | equemene | * |
51 | 1 | equemene | * A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
52 | 1 | equemene | * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
53 | 1 | equemene | * by n part of the array A must contain the upper triangular |
54 | 1 | equemene | * band part of the hermitian matrix, supplied column by |
55 | 1 | equemene | * column, with the leading diagonal of the matrix in row |
56 | 1 | equemene | * ( k + 1 ) of the array, the first super-diagonal starting at |
57 | 1 | equemene | * position 2 in row k, and so on. The top left k by k triangle |
58 | 1 | equemene | * of the array A is not referenced. |
59 | 1 | equemene | * The following program segment will transfer the upper |
60 | 1 | equemene | * triangular part of a hermitian band matrix from conventional |
61 | 1 | equemene | * full matrix storage to band storage: |
62 | 1 | equemene | * |
63 | 1 | equemene | * DO 20, J = 1, N |
64 | 1 | equemene | * M = K + 1 - J |
65 | 1 | equemene | * DO 10, I = MAX( 1, J - K ), J |
66 | 1 | equemene | * A( M + I, J ) = matrix( I, J ) |
67 | 1 | equemene | * 10 CONTINUE |
68 | 1 | equemene | * 20 CONTINUE |
69 | 1 | equemene | * |
70 | 1 | equemene | * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
71 | 1 | equemene | * by n part of the array A must contain the lower triangular |
72 | 1 | equemene | * band part of the hermitian matrix, supplied column by |
73 | 1 | equemene | * column, with the leading diagonal of the matrix in row 1 of |
74 | 1 | equemene | * the array, the first sub-diagonal starting at position 1 in |
75 | 1 | equemene | * row 2, and so on. The bottom right k by k triangle of the |
76 | 1 | equemene | * array A is not referenced. |
77 | 1 | equemene | * The following program segment will transfer the lower |
78 | 1 | equemene | * triangular part of a hermitian band matrix from conventional |
79 | 1 | equemene | * full matrix storage to band storage: |
80 | 1 | equemene | * |
81 | 1 | equemene | * DO 20, J = 1, N |
82 | 1 | equemene | * M = 1 - J |
83 | 1 | equemene | * DO 10, I = J, MIN( N, J + K ) |
84 | 1 | equemene | * A( M + I, J ) = matrix( I, J ) |
85 | 1 | equemene | * 10 CONTINUE |
86 | 1 | equemene | * 20 CONTINUE |
87 | 1 | equemene | * |
88 | 1 | equemene | * Note that the imaginary parts of the diagonal elements need |
89 | 1 | equemene | * not be set and are assumed to be zero. |
90 | 1 | equemene | * Unchanged on exit. |
91 | 1 | equemene | * |
92 | 1 | equemene | * LDA - INTEGER. |
93 | 1 | equemene | * On entry, LDA specifies the first dimension of A as declared |
94 | 1 | equemene | * in the calling (sub) program. LDA must be at least |
95 | 1 | equemene | * ( k + 1 ). |
96 | 1 | equemene | * Unchanged on exit. |
97 | 1 | equemene | * |
98 | 1 | equemene | * X - COMPLEX*16 array of DIMENSION at least |
99 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCX ) ). |
100 | 1 | equemene | * Before entry, the incremented array X must contain the |
101 | 1 | equemene | * vector x. |
102 | 1 | equemene | * Unchanged on exit. |
103 | 1 | equemene | * |
104 | 1 | equemene | * INCX - INTEGER. |
105 | 1 | equemene | * On entry, INCX specifies the increment for the elements of |
106 | 1 | equemene | * X. INCX must not be zero. |
107 | 1 | equemene | * Unchanged on exit. |
108 | 1 | equemene | * |
109 | 1 | equemene | * BETA - COMPLEX*16 . |
110 | 1 | equemene | * On entry, BETA specifies the scalar beta. |
111 | 1 | equemene | * Unchanged on exit. |
112 | 1 | equemene | * |
113 | 1 | equemene | * Y - COMPLEX*16 array of DIMENSION at least |
114 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCY ) ). |
115 | 1 | equemene | * Before entry, the incremented array Y must contain the |
116 | 1 | equemene | * vector y. On exit, Y is overwritten by the updated vector y. |
117 | 1 | equemene | * |
118 | 1 | equemene | * INCY - INTEGER. |
119 | 1 | equemene | * On entry, INCY specifies the increment for the elements of |
120 | 1 | equemene | * Y. INCY must not be zero. |
121 | 1 | equemene | * Unchanged on exit. |
122 | 1 | equemene | * |
123 | 1 | equemene | * |
124 | 1 | equemene | * Level 2 Blas routine. |
125 | 1 | equemene | * |
126 | 1 | equemene | * -- Written on 22-October-1986. |
127 | 1 | equemene | * Jack Dongarra, Argonne National Lab. |
128 | 1 | equemene | * Jeremy Du Croz, Nag Central Office. |
129 | 1 | equemene | * Sven Hammarling, Nag Central Office. |
130 | 1 | equemene | * Richard Hanson, Sandia National Labs. |
131 | 1 | equemene | * |
132 | 1 | equemene | * |
133 | 1 | equemene | * .. Parameters .. |
134 | 1 | equemene | DOUBLE COMPLEX ONE |
135 | 1 | equemene | PARAMETER (ONE= (1.0D+0,0.0D+0)) |
136 | 1 | equemene | DOUBLE COMPLEX ZERO |
137 | 1 | equemene | PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
138 | 1 | equemene | * .. |
139 | 1 | equemene | * .. Local Scalars .. |
140 | 1 | equemene | DOUBLE COMPLEX TEMP1,TEMP2 |
141 | 1 | equemene | INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L |
142 | 1 | equemene | * .. |
143 | 1 | equemene | * .. External Functions .. |
144 | 1 | equemene | LOGICAL LSAME |
145 | 1 | equemene | EXTERNAL LSAME |
146 | 1 | equemene | * .. |
147 | 1 | equemene | * .. External Subroutines .. |
148 | 1 | equemene | EXTERNAL XERBLA |
149 | 1 | equemene | * .. |
150 | 1 | equemene | * .. Intrinsic Functions .. |
151 | 1 | equemene | INTRINSIC DBLE,DCONJG,MAX,MIN |
152 | 1 | equemene | * .. |
153 | 1 | equemene | * |
154 | 1 | equemene | * Test the input parameters. |
155 | 1 | equemene | * |
156 | 1 | equemene | INFO = 0 |
157 | 1 | equemene | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
158 | 1 | equemene | INFO = 1 |
159 | 1 | equemene | ELSE IF (N.LT.0) THEN |
160 | 1 | equemene | INFO = 2 |
161 | 1 | equemene | ELSE IF (K.LT.0) THEN |
162 | 1 | equemene | INFO = 3 |
163 | 1 | equemene | ELSE IF (LDA.LT. (K+1)) THEN |
164 | 1 | equemene | INFO = 6 |
165 | 1 | equemene | ELSE IF (INCX.EQ.0) THEN |
166 | 1 | equemene | INFO = 8 |
167 | 1 | equemene | ELSE IF (INCY.EQ.0) THEN |
168 | 1 | equemene | INFO = 11 |
169 | 1 | equemene | END IF |
170 | 1 | equemene | IF (INFO.NE.0) THEN |
171 | 1 | equemene | CALL XERBLA('ZHBMV ',INFO) |
172 | 1 | equemene | RETURN |
173 | 1 | equemene | END IF |
174 | 1 | equemene | * |
175 | 1 | equemene | * Quick return if possible. |
176 | 1 | equemene | * |
177 | 1 | equemene | IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
178 | 1 | equemene | * |
179 | 1 | equemene | * Set up the start points in X and Y. |
180 | 1 | equemene | * |
181 | 1 | equemene | IF (INCX.GT.0) THEN |
182 | 1 | equemene | KX = 1 |
183 | 1 | equemene | ELSE |
184 | 1 | equemene | KX = 1 - (N-1)*INCX |
185 | 1 | equemene | END IF |
186 | 1 | equemene | IF (INCY.GT.0) THEN |
187 | 1 | equemene | KY = 1 |
188 | 1 | equemene | ELSE |
189 | 1 | equemene | KY = 1 - (N-1)*INCY |
190 | 1 | equemene | END IF |
191 | 1 | equemene | * |
192 | 1 | equemene | * Start the operations. In this version the elements of the array A |
193 | 1 | equemene | * are accessed sequentially with one pass through A. |
194 | 1 | equemene | * |
195 | 1 | equemene | * First form y := beta*y. |
196 | 1 | equemene | * |
197 | 1 | equemene | IF (BETA.NE.ONE) THEN |
198 | 1 | equemene | IF (INCY.EQ.1) THEN |
199 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
200 | 1 | equemene | DO 10 I = 1,N |
201 | 1 | equemene | Y(I) = ZERO |
202 | 1 | equemene | 10 CONTINUE |
203 | 1 | equemene | ELSE |
204 | 1 | equemene | DO 20 I = 1,N |
205 | 1 | equemene | Y(I) = BETA*Y(I) |
206 | 1 | equemene | 20 CONTINUE |
207 | 1 | equemene | END IF |
208 | 1 | equemene | ELSE |
209 | 1 | equemene | IY = KY |
210 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
211 | 1 | equemene | DO 30 I = 1,N |
212 | 1 | equemene | Y(IY) = ZERO |
213 | 1 | equemene | IY = IY + INCY |
214 | 1 | equemene | 30 CONTINUE |
215 | 1 | equemene | ELSE |
216 | 1 | equemene | DO 40 I = 1,N |
217 | 1 | equemene | Y(IY) = BETA*Y(IY) |
218 | 1 | equemene | IY = IY + INCY |
219 | 1 | equemene | 40 CONTINUE |
220 | 1 | equemene | END IF |
221 | 1 | equemene | END IF |
222 | 1 | equemene | END IF |
223 | 1 | equemene | IF (ALPHA.EQ.ZERO) RETURN |
224 | 1 | equemene | IF (LSAME(UPLO,'U')) THEN |
225 | 1 | equemene | * |
226 | 1 | equemene | * Form y when upper triangle of A is stored. |
227 | 1 | equemene | * |
228 | 1 | equemene | KPLUS1 = K + 1 |
229 | 1 | equemene | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
230 | 1 | equemene | DO 60 J = 1,N |
231 | 1 | equemene | TEMP1 = ALPHA*X(J) |
232 | 1 | equemene | TEMP2 = ZERO |
233 | 1 | equemene | L = KPLUS1 - J |
234 | 1 | equemene | DO 50 I = MAX(1,J-K),J - 1 |
235 | 1 | equemene | Y(I) = Y(I) + TEMP1*A(L+I,J) |
236 | 1 | equemene | TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I) |
237 | 1 | equemene | 50 CONTINUE |
238 | 1 | equemene | Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2 |
239 | 1 | equemene | 60 CONTINUE |
240 | 1 | equemene | ELSE |
241 | 1 | equemene | JX = KX |
242 | 1 | equemene | JY = KY |
243 | 1 | equemene | DO 80 J = 1,N |
244 | 1 | equemene | TEMP1 = ALPHA*X(JX) |
245 | 1 | equemene | TEMP2 = ZERO |
246 | 1 | equemene | IX = KX |
247 | 1 | equemene | IY = KY |
248 | 1 | equemene | L = KPLUS1 - J |
249 | 1 | equemene | DO 70 I = MAX(1,J-K),J - 1 |
250 | 1 | equemene | Y(IY) = Y(IY) + TEMP1*A(L+I,J) |
251 | 1 | equemene | TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX) |
252 | 1 | equemene | IX = IX + INCX |
253 | 1 | equemene | IY = IY + INCY |
254 | 1 | equemene | 70 CONTINUE |
255 | 1 | equemene | Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2 |
256 | 1 | equemene | JX = JX + INCX |
257 | 1 | equemene | JY = JY + INCY |
258 | 1 | equemene | IF (J.GT.K) THEN |
259 | 1 | equemene | KX = KX + INCX |
260 | 1 | equemene | KY = KY + INCY |
261 | 1 | equemene | END IF |
262 | 1 | equemene | 80 CONTINUE |
263 | 1 | equemene | END IF |
264 | 1 | equemene | ELSE |
265 | 1 | equemene | * |
266 | 1 | equemene | * Form y when lower triangle of A is stored. |
267 | 1 | equemene | * |
268 | 1 | equemene | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
269 | 1 | equemene | DO 100 J = 1,N |
270 | 1 | equemene | TEMP1 = ALPHA*X(J) |
271 | 1 | equemene | TEMP2 = ZERO |
272 | 1 | equemene | Y(J) = Y(J) + TEMP1*DBLE(A(1,J)) |
273 | 1 | equemene | L = 1 - J |
274 | 1 | equemene | DO 90 I = J + 1,MIN(N,J+K) |
275 | 1 | equemene | Y(I) = Y(I) + TEMP1*A(L+I,J) |
276 | 1 | equemene | TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I) |
277 | 1 | equemene | 90 CONTINUE |
278 | 1 | equemene | Y(J) = Y(J) + ALPHA*TEMP2 |
279 | 1 | equemene | 100 CONTINUE |
280 | 1 | equemene | ELSE |
281 | 1 | equemene | JX = KX |
282 | 1 | equemene | JY = KY |
283 | 1 | equemene | DO 120 J = 1,N |
284 | 1 | equemene | TEMP1 = ALPHA*X(JX) |
285 | 1 | equemene | TEMP2 = ZERO |
286 | 1 | equemene | Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J)) |
287 | 1 | equemene | L = 1 - J |
288 | 1 | equemene | IX = JX |
289 | 1 | equemene | IY = JY |
290 | 1 | equemene | DO 110 I = J + 1,MIN(N,J+K) |
291 | 1 | equemene | IX = IX + INCX |
292 | 1 | equemene | IY = IY + INCY |
293 | 1 | equemene | Y(IY) = Y(IY) + TEMP1*A(L+I,J) |
294 | 1 | equemene | TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX) |
295 | 1 | equemene | 110 CONTINUE |
296 | 1 | equemene | Y(JY) = Y(JY) + ALPHA*TEMP2 |
297 | 1 | equemene | JX = JX + INCX |
298 | 1 | equemene | JY = JY + INCY |
299 | 1 | equemene | 120 CONTINUE |
300 | 1 | equemene | END IF |
301 | 1 | equemene | END IF |
302 | 1 | equemene | * |
303 | 1 | equemene | RETURN |
304 | 1 | equemene | * |
305 | 1 | equemene | * End of ZHBMV . |
306 | 1 | equemene | * |
307 | 1 | equemene | END |