root / src / blas / zgemm.f @ 7
Historique | Voir | Annoter | Télécharger (12,79 ko)
1 | 1 | equemene | SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | DOUBLE COMPLEX ALPHA,BETA |
4 | 1 | equemene | INTEGER K,LDA,LDB,LDC,M,N |
5 | 1 | equemene | CHARACTER TRANSA,TRANSB |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * ZGEMM performs one of the matrix-matrix operations |
15 | 1 | equemene | * |
16 | 1 | equemene | * C := alpha*op( A )*op( B ) + beta*C, |
17 | 1 | equemene | * |
18 | 1 | equemene | * where op( X ) is one of |
19 | 1 | equemene | * |
20 | 1 | equemene | * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), |
21 | 1 | equemene | * |
22 | 1 | equemene | * alpha and beta are scalars, and A, B and C are matrices, with op( A ) |
23 | 1 | equemene | * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. |
24 | 1 | equemene | * |
25 | 1 | equemene | * Arguments |
26 | 1 | equemene | * ========== |
27 | 1 | equemene | * |
28 | 1 | equemene | * TRANSA - CHARACTER*1. |
29 | 1 | equemene | * On entry, TRANSA specifies the form of op( A ) to be used in |
30 | 1 | equemene | * the matrix multiplication as follows: |
31 | 1 | equemene | * |
32 | 1 | equemene | * TRANSA = 'N' or 'n', op( A ) = A. |
33 | 1 | equemene | * |
34 | 1 | equemene | * TRANSA = 'T' or 't', op( A ) = A'. |
35 | 1 | equemene | * |
36 | 1 | equemene | * TRANSA = 'C' or 'c', op( A ) = conjg( A' ). |
37 | 1 | equemene | * |
38 | 1 | equemene | * Unchanged on exit. |
39 | 1 | equemene | * |
40 | 1 | equemene | * TRANSB - CHARACTER*1. |
41 | 1 | equemene | * On entry, TRANSB specifies the form of op( B ) to be used in |
42 | 1 | equemene | * the matrix multiplication as follows: |
43 | 1 | equemene | * |
44 | 1 | equemene | * TRANSB = 'N' or 'n', op( B ) = B. |
45 | 1 | equemene | * |
46 | 1 | equemene | * TRANSB = 'T' or 't', op( B ) = B'. |
47 | 1 | equemene | * |
48 | 1 | equemene | * TRANSB = 'C' or 'c', op( B ) = conjg( B' ). |
49 | 1 | equemene | * |
50 | 1 | equemene | * Unchanged on exit. |
51 | 1 | equemene | * |
52 | 1 | equemene | * M - INTEGER. |
53 | 1 | equemene | * On entry, M specifies the number of rows of the matrix |
54 | 1 | equemene | * op( A ) and of the matrix C. M must be at least zero. |
55 | 1 | equemene | * Unchanged on exit. |
56 | 1 | equemene | * |
57 | 1 | equemene | * N - INTEGER. |
58 | 1 | equemene | * On entry, N specifies the number of columns of the matrix |
59 | 1 | equemene | * op( B ) and the number of columns of the matrix C. N must be |
60 | 1 | equemene | * at least zero. |
61 | 1 | equemene | * Unchanged on exit. |
62 | 1 | equemene | * |
63 | 1 | equemene | * K - INTEGER. |
64 | 1 | equemene | * On entry, K specifies the number of columns of the matrix |
65 | 1 | equemene | * op( A ) and the number of rows of the matrix op( B ). K must |
66 | 1 | equemene | * be at least zero. |
67 | 1 | equemene | * Unchanged on exit. |
68 | 1 | equemene | * |
69 | 1 | equemene | * ALPHA - COMPLEX*16 . |
70 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
71 | 1 | equemene | * Unchanged on exit. |
72 | 1 | equemene | * |
73 | 1 | equemene | * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is |
74 | 1 | equemene | * k when TRANSA = 'N' or 'n', and is m otherwise. |
75 | 1 | equemene | * Before entry with TRANSA = 'N' or 'n', the leading m by k |
76 | 1 | equemene | * part of the array A must contain the matrix A, otherwise |
77 | 1 | equemene | * the leading k by m part of the array A must contain the |
78 | 1 | equemene | * matrix A. |
79 | 1 | equemene | * Unchanged on exit. |
80 | 1 | equemene | * |
81 | 1 | equemene | * LDA - INTEGER. |
82 | 1 | equemene | * On entry, LDA specifies the first dimension of A as declared |
83 | 1 | equemene | * in the calling (sub) program. When TRANSA = 'N' or 'n' then |
84 | 1 | equemene | * LDA must be at least max( 1, m ), otherwise LDA must be at |
85 | 1 | equemene | * least max( 1, k ). |
86 | 1 | equemene | * Unchanged on exit. |
87 | 1 | equemene | * |
88 | 1 | equemene | * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is |
89 | 1 | equemene | * n when TRANSB = 'N' or 'n', and is k otherwise. |
90 | 1 | equemene | * Before entry with TRANSB = 'N' or 'n', the leading k by n |
91 | 1 | equemene | * part of the array B must contain the matrix B, otherwise |
92 | 1 | equemene | * the leading n by k part of the array B must contain the |
93 | 1 | equemene | * matrix B. |
94 | 1 | equemene | * Unchanged on exit. |
95 | 1 | equemene | * |
96 | 1 | equemene | * LDB - INTEGER. |
97 | 1 | equemene | * On entry, LDB specifies the first dimension of B as declared |
98 | 1 | equemene | * in the calling (sub) program. When TRANSB = 'N' or 'n' then |
99 | 1 | equemene | * LDB must be at least max( 1, k ), otherwise LDB must be at |
100 | 1 | equemene | * least max( 1, n ). |
101 | 1 | equemene | * Unchanged on exit. |
102 | 1 | equemene | * |
103 | 1 | equemene | * BETA - COMPLEX*16 . |
104 | 1 | equemene | * On entry, BETA specifies the scalar beta. When BETA is |
105 | 1 | equemene | * supplied as zero then C need not be set on input. |
106 | 1 | equemene | * Unchanged on exit. |
107 | 1 | equemene | * |
108 | 1 | equemene | * C - COMPLEX*16 array of DIMENSION ( LDC, n ). |
109 | 1 | equemene | * Before entry, the leading m by n part of the array C must |
110 | 1 | equemene | * contain the matrix C, except when beta is zero, in which |
111 | 1 | equemene | * case C need not be set on entry. |
112 | 1 | equemene | * On exit, the array C is overwritten by the m by n matrix |
113 | 1 | equemene | * ( alpha*op( A )*op( B ) + beta*C ). |
114 | 1 | equemene | * |
115 | 1 | equemene | * LDC - INTEGER. |
116 | 1 | equemene | * On entry, LDC specifies the first dimension of C as declared |
117 | 1 | equemene | * in the calling (sub) program. LDC must be at least |
118 | 1 | equemene | * max( 1, m ). |
119 | 1 | equemene | * Unchanged on exit. |
120 | 1 | equemene | * |
121 | 1 | equemene | * |
122 | 1 | equemene | * Level 3 Blas routine. |
123 | 1 | equemene | * |
124 | 1 | equemene | * -- Written on 8-February-1989. |
125 | 1 | equemene | * Jack Dongarra, Argonne National Laboratory. |
126 | 1 | equemene | * Iain Duff, AERE Harwell. |
127 | 1 | equemene | * Jeremy Du Croz, Numerical Algorithms Group Ltd. |
128 | 1 | equemene | * Sven Hammarling, Numerical Algorithms Group Ltd. |
129 | 1 | equemene | * |
130 | 1 | equemene | * |
131 | 1 | equemene | * .. External Functions .. |
132 | 1 | equemene | LOGICAL LSAME |
133 | 1 | equemene | EXTERNAL LSAME |
134 | 1 | equemene | * .. |
135 | 1 | equemene | * .. External Subroutines .. |
136 | 1 | equemene | EXTERNAL XERBLA |
137 | 1 | equemene | * .. |
138 | 1 | equemene | * .. Intrinsic Functions .. |
139 | 1 | equemene | INTRINSIC DCONJG,MAX |
140 | 1 | equemene | * .. |
141 | 1 | equemene | * .. Local Scalars .. |
142 | 1 | equemene | DOUBLE COMPLEX TEMP |
143 | 1 | equemene | INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB |
144 | 1 | equemene | LOGICAL CONJA,CONJB,NOTA,NOTB |
145 | 1 | equemene | * .. |
146 | 1 | equemene | * .. Parameters .. |
147 | 1 | equemene | DOUBLE COMPLEX ONE |
148 | 1 | equemene | PARAMETER (ONE= (1.0D+0,0.0D+0)) |
149 | 1 | equemene | DOUBLE COMPLEX ZERO |
150 | 1 | equemene | PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
151 | 1 | equemene | * .. |
152 | 1 | equemene | * |
153 | 1 | equemene | * Set NOTA and NOTB as true if A and B respectively are not |
154 | 1 | equemene | * conjugated or transposed, set CONJA and CONJB as true if A and |
155 | 1 | equemene | * B respectively are to be transposed but not conjugated and set |
156 | 1 | equemene | * NROWA, NCOLA and NROWB as the number of rows and columns of A |
157 | 1 | equemene | * and the number of rows of B respectively. |
158 | 1 | equemene | * |
159 | 1 | equemene | NOTA = LSAME(TRANSA,'N') |
160 | 1 | equemene | NOTB = LSAME(TRANSB,'N') |
161 | 1 | equemene | CONJA = LSAME(TRANSA,'C') |
162 | 1 | equemene | CONJB = LSAME(TRANSB,'C') |
163 | 1 | equemene | IF (NOTA) THEN |
164 | 1 | equemene | NROWA = M |
165 | 1 | equemene | NCOLA = K |
166 | 1 | equemene | ELSE |
167 | 1 | equemene | NROWA = K |
168 | 1 | equemene | NCOLA = M |
169 | 1 | equemene | END IF |
170 | 1 | equemene | IF (NOTB) THEN |
171 | 1 | equemene | NROWB = K |
172 | 1 | equemene | ELSE |
173 | 1 | equemene | NROWB = N |
174 | 1 | equemene | END IF |
175 | 1 | equemene | * |
176 | 1 | equemene | * Test the input parameters. |
177 | 1 | equemene | * |
178 | 1 | equemene | INFO = 0 |
179 | 1 | equemene | IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. |
180 | 1 | equemene | + (.NOT.LSAME(TRANSA,'T'))) THEN |
181 | 1 | equemene | INFO = 1 |
182 | 1 | equemene | ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. |
183 | 1 | equemene | + (.NOT.LSAME(TRANSB,'T'))) THEN |
184 | 1 | equemene | INFO = 2 |
185 | 1 | equemene | ELSE IF (M.LT.0) THEN |
186 | 1 | equemene | INFO = 3 |
187 | 1 | equemene | ELSE IF (N.LT.0) THEN |
188 | 1 | equemene | INFO = 4 |
189 | 1 | equemene | ELSE IF (K.LT.0) THEN |
190 | 1 | equemene | INFO = 5 |
191 | 1 | equemene | ELSE IF (LDA.LT.MAX(1,NROWA)) THEN |
192 | 1 | equemene | INFO = 8 |
193 | 1 | equemene | ELSE IF (LDB.LT.MAX(1,NROWB)) THEN |
194 | 1 | equemene | INFO = 10 |
195 | 1 | equemene | ELSE IF (LDC.LT.MAX(1,M)) THEN |
196 | 1 | equemene | INFO = 13 |
197 | 1 | equemene | END IF |
198 | 1 | equemene | IF (INFO.NE.0) THEN |
199 | 1 | equemene | CALL XERBLA('ZGEMM ',INFO) |
200 | 1 | equemene | RETURN |
201 | 1 | equemene | END IF |
202 | 1 | equemene | * |
203 | 1 | equemene | * Quick return if possible. |
204 | 1 | equemene | * |
205 | 1 | equemene | IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
206 | 1 | equemene | + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN |
207 | 1 | equemene | * |
208 | 1 | equemene | * And when alpha.eq.zero. |
209 | 1 | equemene | * |
210 | 1 | equemene | IF (ALPHA.EQ.ZERO) THEN |
211 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
212 | 1 | equemene | DO 20 J = 1,N |
213 | 1 | equemene | DO 10 I = 1,M |
214 | 1 | equemene | C(I,J) = ZERO |
215 | 1 | equemene | 10 CONTINUE |
216 | 1 | equemene | 20 CONTINUE |
217 | 1 | equemene | ELSE |
218 | 1 | equemene | DO 40 J = 1,N |
219 | 1 | equemene | DO 30 I = 1,M |
220 | 1 | equemene | C(I,J) = BETA*C(I,J) |
221 | 1 | equemene | 30 CONTINUE |
222 | 1 | equemene | 40 CONTINUE |
223 | 1 | equemene | END IF |
224 | 1 | equemene | RETURN |
225 | 1 | equemene | END IF |
226 | 1 | equemene | * |
227 | 1 | equemene | * Start the operations. |
228 | 1 | equemene | * |
229 | 1 | equemene | IF (NOTB) THEN |
230 | 1 | equemene | IF (NOTA) THEN |
231 | 1 | equemene | * |
232 | 1 | equemene | * Form C := alpha*A*B + beta*C. |
233 | 1 | equemene | * |
234 | 1 | equemene | DO 90 J = 1,N |
235 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
236 | 1 | equemene | DO 50 I = 1,M |
237 | 1 | equemene | C(I,J) = ZERO |
238 | 1 | equemene | 50 CONTINUE |
239 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
240 | 1 | equemene | DO 60 I = 1,M |
241 | 1 | equemene | C(I,J) = BETA*C(I,J) |
242 | 1 | equemene | 60 CONTINUE |
243 | 1 | equemene | END IF |
244 | 1 | equemene | DO 80 L = 1,K |
245 | 1 | equemene | IF (B(L,J).NE.ZERO) THEN |
246 | 1 | equemene | TEMP = ALPHA*B(L,J) |
247 | 1 | equemene | DO 70 I = 1,M |
248 | 1 | equemene | C(I,J) = C(I,J) + TEMP*A(I,L) |
249 | 1 | equemene | 70 CONTINUE |
250 | 1 | equemene | END IF |
251 | 1 | equemene | 80 CONTINUE |
252 | 1 | equemene | 90 CONTINUE |
253 | 1 | equemene | ELSE IF (CONJA) THEN |
254 | 1 | equemene | * |
255 | 1 | equemene | * Form C := alpha*conjg( A' )*B + beta*C. |
256 | 1 | equemene | * |
257 | 1 | equemene | DO 120 J = 1,N |
258 | 1 | equemene | DO 110 I = 1,M |
259 | 1 | equemene | TEMP = ZERO |
260 | 1 | equemene | DO 100 L = 1,K |
261 | 1 | equemene | TEMP = TEMP + DCONJG(A(L,I))*B(L,J) |
262 | 1 | equemene | 100 CONTINUE |
263 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
264 | 1 | equemene | C(I,J) = ALPHA*TEMP |
265 | 1 | equemene | ELSE |
266 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
267 | 1 | equemene | END IF |
268 | 1 | equemene | 110 CONTINUE |
269 | 1 | equemene | 120 CONTINUE |
270 | 1 | equemene | ELSE |
271 | 1 | equemene | * |
272 | 1 | equemene | * Form C := alpha*A'*B + beta*C |
273 | 1 | equemene | * |
274 | 1 | equemene | DO 150 J = 1,N |
275 | 1 | equemene | DO 140 I = 1,M |
276 | 1 | equemene | TEMP = ZERO |
277 | 1 | equemene | DO 130 L = 1,K |
278 | 1 | equemene | TEMP = TEMP + A(L,I)*B(L,J) |
279 | 1 | equemene | 130 CONTINUE |
280 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
281 | 1 | equemene | C(I,J) = ALPHA*TEMP |
282 | 1 | equemene | ELSE |
283 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
284 | 1 | equemene | END IF |
285 | 1 | equemene | 140 CONTINUE |
286 | 1 | equemene | 150 CONTINUE |
287 | 1 | equemene | END IF |
288 | 1 | equemene | ELSE IF (NOTA) THEN |
289 | 1 | equemene | IF (CONJB) THEN |
290 | 1 | equemene | * |
291 | 1 | equemene | * Form C := alpha*A*conjg( B' ) + beta*C. |
292 | 1 | equemene | * |
293 | 1 | equemene | DO 200 J = 1,N |
294 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
295 | 1 | equemene | DO 160 I = 1,M |
296 | 1 | equemene | C(I,J) = ZERO |
297 | 1 | equemene | 160 CONTINUE |
298 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
299 | 1 | equemene | DO 170 I = 1,M |
300 | 1 | equemene | C(I,J) = BETA*C(I,J) |
301 | 1 | equemene | 170 CONTINUE |
302 | 1 | equemene | END IF |
303 | 1 | equemene | DO 190 L = 1,K |
304 | 1 | equemene | IF (B(J,L).NE.ZERO) THEN |
305 | 1 | equemene | TEMP = ALPHA*DCONJG(B(J,L)) |
306 | 1 | equemene | DO 180 I = 1,M |
307 | 1 | equemene | C(I,J) = C(I,J) + TEMP*A(I,L) |
308 | 1 | equemene | 180 CONTINUE |
309 | 1 | equemene | END IF |
310 | 1 | equemene | 190 CONTINUE |
311 | 1 | equemene | 200 CONTINUE |
312 | 1 | equemene | ELSE |
313 | 1 | equemene | * |
314 | 1 | equemene | * Form C := alpha*A*B' + beta*C |
315 | 1 | equemene | * |
316 | 1 | equemene | DO 250 J = 1,N |
317 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
318 | 1 | equemene | DO 210 I = 1,M |
319 | 1 | equemene | C(I,J) = ZERO |
320 | 1 | equemene | 210 CONTINUE |
321 | 1 | equemene | ELSE IF (BETA.NE.ONE) THEN |
322 | 1 | equemene | DO 220 I = 1,M |
323 | 1 | equemene | C(I,J) = BETA*C(I,J) |
324 | 1 | equemene | 220 CONTINUE |
325 | 1 | equemene | END IF |
326 | 1 | equemene | DO 240 L = 1,K |
327 | 1 | equemene | IF (B(J,L).NE.ZERO) THEN |
328 | 1 | equemene | TEMP = ALPHA*B(J,L) |
329 | 1 | equemene | DO 230 I = 1,M |
330 | 1 | equemene | C(I,J) = C(I,J) + TEMP*A(I,L) |
331 | 1 | equemene | 230 CONTINUE |
332 | 1 | equemene | END IF |
333 | 1 | equemene | 240 CONTINUE |
334 | 1 | equemene | 250 CONTINUE |
335 | 1 | equemene | END IF |
336 | 1 | equemene | ELSE IF (CONJA) THEN |
337 | 1 | equemene | IF (CONJB) THEN |
338 | 1 | equemene | * |
339 | 1 | equemene | * Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. |
340 | 1 | equemene | * |
341 | 1 | equemene | DO 280 J = 1,N |
342 | 1 | equemene | DO 270 I = 1,M |
343 | 1 | equemene | TEMP = ZERO |
344 | 1 | equemene | DO 260 L = 1,K |
345 | 1 | equemene | TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L)) |
346 | 1 | equemene | 260 CONTINUE |
347 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
348 | 1 | equemene | C(I,J) = ALPHA*TEMP |
349 | 1 | equemene | ELSE |
350 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
351 | 1 | equemene | END IF |
352 | 1 | equemene | 270 CONTINUE |
353 | 1 | equemene | 280 CONTINUE |
354 | 1 | equemene | ELSE |
355 | 1 | equemene | * |
356 | 1 | equemene | * Form C := alpha*conjg( A' )*B' + beta*C |
357 | 1 | equemene | * |
358 | 1 | equemene | DO 310 J = 1,N |
359 | 1 | equemene | DO 300 I = 1,M |
360 | 1 | equemene | TEMP = ZERO |
361 | 1 | equemene | DO 290 L = 1,K |
362 | 1 | equemene | TEMP = TEMP + DCONJG(A(L,I))*B(J,L) |
363 | 1 | equemene | 290 CONTINUE |
364 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
365 | 1 | equemene | C(I,J) = ALPHA*TEMP |
366 | 1 | equemene | ELSE |
367 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
368 | 1 | equemene | END IF |
369 | 1 | equemene | 300 CONTINUE |
370 | 1 | equemene | 310 CONTINUE |
371 | 1 | equemene | END IF |
372 | 1 | equemene | ELSE |
373 | 1 | equemene | IF (CONJB) THEN |
374 | 1 | equemene | * |
375 | 1 | equemene | * Form C := alpha*A'*conjg( B' ) + beta*C |
376 | 1 | equemene | * |
377 | 1 | equemene | DO 340 J = 1,N |
378 | 1 | equemene | DO 330 I = 1,M |
379 | 1 | equemene | TEMP = ZERO |
380 | 1 | equemene | DO 320 L = 1,K |
381 | 1 | equemene | TEMP = TEMP + A(L,I)*DCONJG(B(J,L)) |
382 | 1 | equemene | 320 CONTINUE |
383 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
384 | 1 | equemene | C(I,J) = ALPHA*TEMP |
385 | 1 | equemene | ELSE |
386 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
387 | 1 | equemene | END IF |
388 | 1 | equemene | 330 CONTINUE |
389 | 1 | equemene | 340 CONTINUE |
390 | 1 | equemene | ELSE |
391 | 1 | equemene | * |
392 | 1 | equemene | * Form C := alpha*A'*B' + beta*C |
393 | 1 | equemene | * |
394 | 1 | equemene | DO 370 J = 1,N |
395 | 1 | equemene | DO 360 I = 1,M |
396 | 1 | equemene | TEMP = ZERO |
397 | 1 | equemene | DO 350 L = 1,K |
398 | 1 | equemene | TEMP = TEMP + A(L,I)*B(J,L) |
399 | 1 | equemene | 350 CONTINUE |
400 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
401 | 1 | equemene | C(I,J) = ALPHA*TEMP |
402 | 1 | equemene | ELSE |
403 | 1 | equemene | C(I,J) = ALPHA*TEMP + BETA*C(I,J) |
404 | 1 | equemene | END IF |
405 | 1 | equemene | 360 CONTINUE |
406 | 1 | equemene | 370 CONTINUE |
407 | 1 | equemene | END IF |
408 | 1 | equemene | END IF |
409 | 1 | equemene | * |
410 | 1 | equemene | RETURN |
411 | 1 | equemene | * |
412 | 1 | equemene | * End of ZGEMM . |
413 | 1 | equemene | * |
414 | 1 | equemene | END |