root / src / blas / sswap.f @ 7
Historique | Voir | Annoter | Télécharger (1,5 ko)
1 | 1 | equemene | SUBROUTINE SSWAP(N,SX,INCX,SY,INCY) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | INTEGER INCX,INCY,N |
4 | 1 | equemene | * .. |
5 | 1 | equemene | * .. Array Arguments .. |
6 | 1 | equemene | REAL SX(*),SY(*) |
7 | 1 | equemene | * .. |
8 | 1 | equemene | * |
9 | 1 | equemene | * Purpose |
10 | 1 | equemene | * ======= |
11 | 1 | equemene | * |
12 | 1 | equemene | * interchanges two vectors. |
13 | 1 | equemene | * uses unrolled loops for increments equal to 1. |
14 | 1 | equemene | * jack dongarra, linpack, 3/11/78. |
15 | 1 | equemene | * modified 12/3/93, array(1) declarations changed to array(*) |
16 | 1 | equemene | * |
17 | 1 | equemene | * |
18 | 1 | equemene | * .. Local Scalars .. |
19 | 1 | equemene | REAL STEMP |
20 | 1 | equemene | INTEGER I,IX,IY,M,MP1 |
21 | 1 | equemene | * .. |
22 | 1 | equemene | * .. Intrinsic Functions .. |
23 | 1 | equemene | INTRINSIC MOD |
24 | 1 | equemene | * .. |
25 | 1 | equemene | IF (N.LE.0) RETURN |
26 | 1 | equemene | IF (INCX.EQ.1 .AND. INCY.EQ.1) GO TO 20 |
27 | 1 | equemene | * |
28 | 1 | equemene | * code for unequal increments or equal increments not equal |
29 | 1 | equemene | * to 1 |
30 | 1 | equemene | * |
31 | 1 | equemene | IX = 1 |
32 | 1 | equemene | IY = 1 |
33 | 1 | equemene | IF (INCX.LT.0) IX = (-N+1)*INCX + 1 |
34 | 1 | equemene | IF (INCY.LT.0) IY = (-N+1)*INCY + 1 |
35 | 1 | equemene | DO 10 I = 1,N |
36 | 1 | equemene | STEMP = SX(IX) |
37 | 1 | equemene | SX(IX) = SY(IY) |
38 | 1 | equemene | SY(IY) = STEMP |
39 | 1 | equemene | IX = IX + INCX |
40 | 1 | equemene | IY = IY + INCY |
41 | 1 | equemene | 10 CONTINUE |
42 | 1 | equemene | RETURN |
43 | 1 | equemene | * |
44 | 1 | equemene | * code for both increments equal to 1 |
45 | 1 | equemene | * |
46 | 1 | equemene | * |
47 | 1 | equemene | * clean-up loop |
48 | 1 | equemene | * |
49 | 1 | equemene | 20 M = MOD(N,3) |
50 | 1 | equemene | IF (M.EQ.0) GO TO 40 |
51 | 1 | equemene | DO 30 I = 1,M |
52 | 1 | equemene | STEMP = SX(I) |
53 | 1 | equemene | SX(I) = SY(I) |
54 | 1 | equemene | SY(I) = STEMP |
55 | 1 | equemene | 30 CONTINUE |
56 | 1 | equemene | IF (N.LT.3) RETURN |
57 | 1 | equemene | 40 MP1 = M + 1 |
58 | 1 | equemene | DO 50 I = MP1,N,3 |
59 | 1 | equemene | STEMP = SX(I) |
60 | 1 | equemene | SX(I) = SY(I) |
61 | 1 | equemene | SY(I) = STEMP |
62 | 1 | equemene | STEMP = SX(I+1) |
63 | 1 | equemene | SX(I+1) = SY(I+1) |
64 | 1 | equemene | SY(I+1) = STEMP |
65 | 1 | equemene | STEMP = SX(I+2) |
66 | 1 | equemene | SX(I+2) = SY(I+2) |
67 | 1 | equemene | SY(I+2) = STEMP |
68 | 1 | equemene | 50 CONTINUE |
69 | 1 | equemene | RETURN |
70 | 1 | equemene | END |