root / src / Step_DIIS.f90 @ 6
Historique | Voir | Annoter | Télécharger (10,33 ko)
1 |
!C HEAT is never used, not even in call of Space(...) |
---|---|
2 |
!C XPARAM = input parameter vector (Geometry). |
3 |
!C Grad = input gradient vector. |
4 |
SUBROUTINE Step_DIIS(XP,XPARAM,GP,GRAD,HP,HEAT,Hess,NVAR,FRST) |
5 |
!SUBROUTINE DIIS(XPARAM,STEP,GRAD,HP,HEAT,Hess,NVAR,FRST) |
6 |
! IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
7 |
IMPLICIT NONE |
8 |
integer, parameter :: KINT = kind(1) |
9 |
integer, parameter :: KREAL = kind(1.0d0) |
10 |
|
11 |
! INCLUDE 'SIZES' |
12 |
|
13 |
INTEGER(KINT) :: NVAR |
14 |
REAL(KREAL) :: XP(NVAR), XPARAM(NVAR), GP(NVAR), GRAD(NVAR), Hess(NVAR*NVAR) |
15 |
!REAL(KREAL) :: Hess_inv(NVAR,NVAR),XPARAM_old(NVAR),STEP(NVAR) |
16 |
REAL(KREAL) :: HEAT, HP |
17 |
LOGICAL :: FRST |
18 |
|
19 |
!************************************************************************ |
20 |
!* * |
21 |
!* DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE * |
22 |
!* * |
23 |
!* THIS INVOLVES SOLVING FOR C IN XPARAM(NEW) = XPARAM' - HG' * |
24 |
!* * |
25 |
!* WHERE XPARAM' = SUM(C(I)XPARAM(I), THE C COEFFICIENTES COMING FROM * |
26 |
!* * |
27 |
!* | B 1 | . | C | = | 0 | * |
28 |
!* | 1 0 | |-L | | 1 | * |
29 |
!* * |
30 |
!* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J) GRAD(I) = GRADIENT ON CYCLE I * |
31 |
!* Hess = INVERSE HESSIAN * |
32 |
!* * |
33 |
!* REFERENCE * |
34 |
!* * |
35 |
!* P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984) * |
36 |
!* * |
37 |
!************************************************************************ |
38 |
!************************************************************************ |
39 |
!* * |
40 |
!* GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN * |
41 |
!* THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER * |
42 |
!* (A VARIABLE METRIC METHOD) * |
43 |
!* * |
44 |
!* WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA * |
45 |
!* * |
46 |
!* REFERENCE * |
47 |
!* * |
48 |
!* "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM * |
49 |
!* GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL * |
50 |
!* LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10, * |
51 |
!* 939-950 (1989). * |
52 |
!* * |
53 |
!* MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS * |
54 |
!* * |
55 |
!************************************************************************ |
56 |
|
57 |
! MRESET = number of iterations. |
58 |
INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
59 |
REAL(KREAL), ALLOCATABLE, SAVE :: XSET(:),GSET(:),ERR(:) ! MRESET*NVAR |
60 |
REAL(KREAL) :: ESET(MRESET) |
61 |
REAL(KREAL), ALLOCATABLE, SAVE :: DX(:),GSAVE(:) !NVAR |
62 |
REAL(KREAL) :: B(M2),BS(M2),BST(M2) |
63 |
LOGICAL DEBUG, PRINT |
64 |
INTEGER(KINT), SAVE :: MSET |
65 |
INTEGER(KINT) :: NDIIS, MPLUS, INV, ITERA, MM |
66 |
INTEGER(KINT) :: I,J,K, JJ, KJ, JNV, II, IONE, IJ, INK,ITmp |
67 |
REAL(KREAL) :: XMax, XNorm, S, DET, THRES |
68 |
|
69 |
DEBUG=.TRUE. |
70 |
PRINT=.TRUE. |
71 |
|
72 |
IF (PRINT) WRITE(*,'(/,'' BEGIN GDIIS '')') |
73 |
|
74 |
!XPARAM_old = XPARAM |
75 |
|
76 |
! Initialization |
77 |
IF (FRST) THEN |
78 |
! FRST will be set to False in Space, so no need to modify it here |
79 |
IF (ALLOCATED(XSET)) THEN |
80 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS Dealloc '')') |
81 |
DEALLOCATE(XSet,GSET,ERR,DX,GSave) |
82 |
RETURN |
83 |
ELSE |
84 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS alloc '')') |
85 |
ALLOCATE(XSet(MRESET*NVAR), GSet(MRESET*NVAR), ERR(MRESET*NVAR)) |
86 |
ALLOCATE(DX(NVAR),GSAVE(NVAR)) |
87 |
END IF |
88 |
END IF |
89 |
!C |
90 |
!C SPACE SIMPLY LOADS THE CURRENT VALUES OF XPARAM AND GRAD INTO |
91 |
!C THE ARRAYS XSET AND GSET |
92 |
!C |
93 |
!C HEAT is never used, not even in Space(...) |
94 |
CALL SPACE(MRESET,MSET,XPARAM,GRAD,HEAT,NVAR,XSET,GSET,ESET,FRST) |
95 |
|
96 |
IF (PRINT) WRITE(*,'(/,'' GDIIS after Space '')') |
97 |
|
98 |
! INITIALIZE SOME VARIABLES AND CONSTANTS: |
99 |
NDIIS = MSET |
100 |
MPLUS = MSET + 1 |
101 |
MM = MPLUS * MPLUS |
102 |
|
103 |
! COMPUTE THE APPROXIMATE ERROR VECTORS: |
104 |
INV=-NVAR |
105 |
DO 30 I=1,MSET |
106 |
INV = INV + NVAR |
107 |
DO 30 J=1,NVAR |
108 |
S = 0.D0 |
109 |
KJ=(J*(J-1))/2 |
110 |
DO 10 K=1,J |
111 |
KJ = KJ+1 |
112 |
10 S = S - Hess(KJ) * GSET(INV+K) |
113 |
DO 20 K=J+1,NVAR |
114 |
KJ = (K*(K-1))/2+J |
115 |
20 S = S - Hess(KJ) * GSET(INV+K) |
116 |
30 ERR(INV+J) = S |
117 |
|
118 |
|
119 |
|
120 |
! CONSTRUCT THE GDIIS MATRIX: |
121 |
! initialization (not really needed) |
122 |
DO I=1,MM |
123 |
B(I) = 1.D0 |
124 |
END DO |
125 |
|
126 |
! B_ij calculations from <e_i|e_j> |
127 |
JJ=0 |
128 |
INV=-NVAR |
129 |
DO 50 I=1,MSET |
130 |
INV=INV+NVAR |
131 |
JNV=-NVAR |
132 |
DO 50 J=1,MSET |
133 |
JNV=JNV+NVAR |
134 |
JJ = JJ + 1 |
135 |
B(JJ)=0.D0 |
136 |
DO 50 K=1,NVAR |
137 |
50 B(JJ) = B(JJ) + ERR(INV+K) * ERR(JNV+K) |
138 |
|
139 |
! The following shifting is required to correct indices of B_ij elements in the GDIIS matrix. |
140 |
! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
141 |
DO 60 I=MSET-1,1,-1 |
142 |
DO 60 J=MSET,1,-1 |
143 |
60 B(I*MSET+J+I) = B(I*MSET+J) |
144 |
|
145 |
! For last row and last column of GDIIS matrix |
146 |
DO 70 I=1,MPLUS |
147 |
B(MPLUS*I) = 1.D0 |
148 |
70 B(MPLUS*MSET+I) = 1.D0 |
149 |
B(MM) = 0.D0 |
150 |
|
151 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
152 |
80 CONTINUE |
153 |
DO 90 I=1,MM |
154 |
90 BS(I) = B(I) |
155 |
IF (NDIIS .EQ. MSET) GO TO 140 |
156 |
DO 130 II=1,MSET-NDIIS |
157 |
XMAX = -1.D10 |
158 |
ITERA = 0 |
159 |
DO 110 I=1,MSET |
160 |
XNORM = 0.D0 |
161 |
INV = (I-1) * MPLUS |
162 |
DO 100 J=1,MSET |
163 |
100 XNORM = XNORM + ABS(B(INV + J)) |
164 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
165 |
XMAX = XNORM |
166 |
ITERA = I |
167 |
IONE = INV + I |
168 |
ENDIF |
169 |
110 CONTINUE |
170 |
DO 120 I=1,MPLUS |
171 |
INV = (I-1) * MPLUS |
172 |
DO 120 J=1,MPLUS |
173 |
JNV = (J-1) * MPLUS |
174 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
175 |
B(JNV + I) = B(INV + J) |
176 |
120 CONTINUE |
177 |
B(IONE) = 1.0D0 |
178 |
130 CONTINUE |
179 |
140 CONTINUE |
180 |
|
181 |
IF (DEBUG) THEN |
182 |
|
183 |
! OUTPUT THE GDIIS MATRIX: |
184 |
WRITE(*,'(/5X,'' GDIIS MATRIX'')') |
185 |
ITmp=min(12,MPLUS) |
186 |
DO IJ=1,MPLUS |
187 |
WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
188 |
END DO |
189 |
ENDIF |
190 |
|
191 |
! SCALE DIIS MATRIX BEFORE INVERSION: |
192 |
|
193 |
DO I=1,MPLUS |
194 |
II = MPLUS * (I-1) + I |
195 |
GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
196 |
END DO |
197 |
|
198 |
GSAVE(MPLUS) = 1.D0 |
199 |
DO I=1,MPLUS |
200 |
DO J=1,MPLUS |
201 |
IJ = MPLUS * (I-1) + J |
202 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
203 |
END DO |
204 |
END DO |
205 |
|
206 |
IF (DEBUG) THEN |
207 |
! OUTPUT SCALED GDIIS MATRIX: |
208 |
WRITE(*,'(/5X,'' GDIIS MATRIX (SCALED)'')') |
209 |
ITmp=min(12,MPLUS) |
210 |
DO IJ=1,MPLUS |
211 |
WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
212 |
END DO |
213 |
|
214 |
ENDIF ! matches IF (DEBUG) THEN |
215 |
|
216 |
! INVERT THE GDIIS MATRIX B: |
217 |
CALL MINV(B,MPLUS,DET) ! matrix inversion. |
218 |
|
219 |
DO I=1,MPLUS |
220 |
DO J=1,MPLUS |
221 |
IJ = MPLUS * (I-1) + J |
222 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
223 |
END DO |
224 |
END DO |
225 |
|
226 |
! COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT VECTORS: |
227 |
DO K=1,NVAR |
228 |
XP(K) = 0.D0 |
229 |
GP(K) = 0.D0 |
230 |
DO I=1,MSET |
231 |
INK = (I-1) * NVAR + K |
232 |
!Print *, 'B(',MPLUS*MSET+I,')=', B(MPLUS*MSET+I) |
233 |
XP(K) = XP(K) + B(MPLUS*MSET+I) * XSET(INK) |
234 |
GP(K) = GP(K) + B(MPLUS*MSET+I) * GSET(INK) |
235 |
END DO |
236 |
END DO |
237 |
|
238 |
HP=0.D0 |
239 |
DO I=1,MSET |
240 |
HP=HP+B(MPLUS*MSET+I)*ESET(I) |
241 |
END DO |
242 |
|
243 |
DO K=1,NVAR |
244 |
DX(K) = XPARAM(K) - XP(K) |
245 |
END DO |
246 |
XNORM = SQRT(DOT_PRODUCT(DX,DX)) |
247 |
IF (PRINT) THEN |
248 |
WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',G9.3)') XNORM,DET |
249 |
WRITE(*,'(10X,''GDIIS COEFFICIENTS'')') |
250 |
WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET) |
251 |
ENDIF |
252 |
|
253 |
! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
254 |
THRES = MAX(10.D0**(-NVAR), 1.D-25) |
255 |
IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
256 |
IF (PRINT)THEN |
257 |
WRITE(*,*) "THE DIIS MATRIX IS ILL CONDITIONED" |
258 |
WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
259 |
WRITE(*,*) "THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
260 |
END IF |
261 |
DO K=1,MM |
262 |
B(K) = BS(K) |
263 |
END DO |
264 |
NDIIS = NDIIS - 1 |
265 |
IF (NDIIS .GT. 0) GO TO 80 |
266 |
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
267 |
DO K=1,NVAR |
268 |
XP(K) = XPARAM(K) |
269 |
GP(K) = GRAD(K) |
270 |
END DO |
271 |
ENDIF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
272 |
|
273 |
! q_{m+1} = q'_{m+1} - H^{-1}g'_{m+1} |
274 |
! Hess is a symmetric matrix. |
275 |
!Hess_inv = 1.d0 ! to be deleted. |
276 |
!Call GenInv(NVAR,Reshape(Hess,(/NVAR,NVAR/)),Hess_inv,NVAR) ! Implemented in Mat_util.f90 |
277 |
! H^{-1}g'_{m+1} |
278 |
!Print *, 'Hess_inv=' |
279 |
!Print *, Hess_inv |
280 |
!XPARAM=0.d0 |
281 |
!DO I=1, NVAR |
282 |
!XPARAM(:) = XPARAM(:) + Hess_inv(:,I)*GP(I) |
283 |
!END DO |
284 |
!XPARAM(:) = XP(:) - XPARAM(:) ! now XPARAM is a new geometry. |
285 |
|
286 |
!STEP is the difference between the new and old geometry and thus "step": |
287 |
!STEP = XPARAM - XPARAM_old |
288 |
|
289 |
IF (PRINT) WRITE(*,'(/,'' END GDIIS '',/)') |
290 |
|
291 |
END SUBROUTINE Step_DIIS |