Statistiques
| Révision :

root / src / blas / ctpmv.f @ 4

Historique | Voir | Annoter | Télécharger (10,55 ko)

1
      SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2
*     .. Scalar Arguments ..
3
      INTEGER INCX,N
4
      CHARACTER DIAG,TRANS,UPLO
5
*     ..
6
*     .. Array Arguments ..
7
      COMPLEX AP(*),X(*)
8
*     ..
9
*
10
*  Purpose
11
*  =======
12
*
13
*  CTPMV  performs one of the matrix-vector operations
14
*
15
*     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
16
*
17
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18
*  upper or lower triangular matrix, supplied in packed form.
19
*
20
*  Arguments
21
*  ==========
22
*
23
*  UPLO   - CHARACTER*1.
24
*           On entry, UPLO specifies whether the matrix is an upper or
25
*           lower triangular matrix as follows:
26
*
27
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28
*
29
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30
*
31
*           Unchanged on exit.
32
*
33
*  TRANS  - CHARACTER*1.
34
*           On entry, TRANS specifies the operation to be performed as
35
*           follows:
36
*
37
*              TRANS = 'N' or 'n'   x := A*x.
38
*
39
*              TRANS = 'T' or 't'   x := A'*x.
40
*
41
*              TRANS = 'C' or 'c'   x := conjg( A' )*x.
42
*
43
*           Unchanged on exit.
44
*
45
*  DIAG   - CHARACTER*1.
46
*           On entry, DIAG specifies whether or not A is unit
47
*           triangular as follows:
48
*
49
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50
*
51
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52
*                                  triangular.
53
*
54
*           Unchanged on exit.
55
*
56
*  N      - INTEGER.
57
*           On entry, N specifies the order of the matrix A.
58
*           N must be at least zero.
59
*           Unchanged on exit.
60
*
61
*  AP     - COMPLEX          array of DIMENSION at least
62
*           ( ( n*( n + 1 ) )/2 ).
63
*           Before entry with  UPLO = 'U' or 'u', the array AP must
64
*           contain the upper triangular matrix packed sequentially,
65
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
66
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
67
*           respectively, and so on.
68
*           Before entry with UPLO = 'L' or 'l', the array AP must
69
*           contain the lower triangular matrix packed sequentially,
70
*           column by column, so that AP( 1 ) contains a( 1, 1 ),
71
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
72
*           respectively, and so on.
73
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74
*           A are not referenced, but are assumed to be unity.
75
*           Unchanged on exit.
76
*
77
*  X      - COMPLEX          array of dimension at least
78
*           ( 1 + ( n - 1 )*abs( INCX ) ).
79
*           Before entry, the incremented array X must contain the n
80
*           element vector x. On exit, X is overwritten with the
81
*           tranformed vector x.
82
*
83
*  INCX   - INTEGER.
84
*           On entry, INCX specifies the increment for the elements of
85
*           X. INCX must not be zero.
86
*           Unchanged on exit.
87
*
88
*
89
*  Level 2 Blas routine.
90
*
91
*  -- Written on 22-October-1986.
92
*     Jack Dongarra, Argonne National Lab.
93
*     Jeremy Du Croz, Nag Central Office.
94
*     Sven Hammarling, Nag Central Office.
95
*     Richard Hanson, Sandia National Labs.
96
*
97
*
98
*     .. Parameters ..
99
      COMPLEX ZERO
100
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
101
*     ..
102
*     .. Local Scalars ..
103
      COMPLEX TEMP
104
      INTEGER I,INFO,IX,J,JX,K,KK,KX
105
      LOGICAL NOCONJ,NOUNIT
106
*     ..
107
*     .. External Functions ..
108
      LOGICAL LSAME
109
      EXTERNAL LSAME
110
*     ..
111
*     .. External Subroutines ..
112
      EXTERNAL XERBLA
113
*     ..
114
*     .. Intrinsic Functions ..
115
      INTRINSIC CONJG
116
*     ..
117
*
118
*     Test the input parameters.
119
*
120
      INFO = 0
121
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
122
          INFO = 1
123
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
124
     +         .NOT.LSAME(TRANS,'C')) THEN
125
          INFO = 2
126
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
127
          INFO = 3
128
      ELSE IF (N.LT.0) THEN
129
          INFO = 4
130
      ELSE IF (INCX.EQ.0) THEN
131
          INFO = 7
132
      END IF
133
      IF (INFO.NE.0) THEN
134
          CALL XERBLA('CTPMV ',INFO)
135
          RETURN
136
      END IF
137
*
138
*     Quick return if possible.
139
*
140
      IF (N.EQ.0) RETURN
141
*
142
      NOCONJ = LSAME(TRANS,'T')
143
      NOUNIT = LSAME(DIAG,'N')
144
*
145
*     Set up the start point in X if the increment is not unity. This
146
*     will be  ( N - 1 )*INCX  too small for descending loops.
147
*
148
      IF (INCX.LE.0) THEN
149
          KX = 1 - (N-1)*INCX
150
      ELSE IF (INCX.NE.1) THEN
151
          KX = 1
152
      END IF
153
*
154
*     Start the operations. In this version the elements of AP are
155
*     accessed sequentially with one pass through AP.
156
*
157
      IF (LSAME(TRANS,'N')) THEN
158
*
159
*        Form  x:= A*x.
160
*
161
          IF (LSAME(UPLO,'U')) THEN
162
              KK = 1
163
              IF (INCX.EQ.1) THEN
164
                  DO 20 J = 1,N
165
                      IF (X(J).NE.ZERO) THEN
166
                          TEMP = X(J)
167
                          K = KK
168
                          DO 10 I = 1,J - 1
169
                              X(I) = X(I) + TEMP*AP(K)
170
                              K = K + 1
171
   10                     CONTINUE
172
                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
173
                      END IF
174
                      KK = KK + J
175
   20             CONTINUE
176
              ELSE
177
                  JX = KX
178
                  DO 40 J = 1,N
179
                      IF (X(JX).NE.ZERO) THEN
180
                          TEMP = X(JX)
181
                          IX = KX
182
                          DO 30 K = KK,KK + J - 2
183
                              X(IX) = X(IX) + TEMP*AP(K)
184
                              IX = IX + INCX
185
   30                     CONTINUE
186
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
187
                      END IF
188
                      JX = JX + INCX
189
                      KK = KK + J
190
   40             CONTINUE
191
              END IF
192
          ELSE
193
              KK = (N* (N+1))/2
194
              IF (INCX.EQ.1) THEN
195
                  DO 60 J = N,1,-1
196
                      IF (X(J).NE.ZERO) THEN
197
                          TEMP = X(J)
198
                          K = KK
199
                          DO 50 I = N,J + 1,-1
200
                              X(I) = X(I) + TEMP*AP(K)
201
                              K = K - 1
202
   50                     CONTINUE
203
                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
204
                      END IF
205
                      KK = KK - (N-J+1)
206
   60             CONTINUE
207
              ELSE
208
                  KX = KX + (N-1)*INCX
209
                  JX = KX
210
                  DO 80 J = N,1,-1
211
                      IF (X(JX).NE.ZERO) THEN
212
                          TEMP = X(JX)
213
                          IX = KX
214
                          DO 70 K = KK,KK - (N- (J+1)),-1
215
                              X(IX) = X(IX) + TEMP*AP(K)
216
                              IX = IX - INCX
217
   70                     CONTINUE
218
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
219
                      END IF
220
                      JX = JX - INCX
221
                      KK = KK - (N-J+1)
222
   80             CONTINUE
223
              END IF
224
          END IF
225
      ELSE
226
*
227
*        Form  x := A'*x  or  x := conjg( A' )*x.
228
*
229
          IF (LSAME(UPLO,'U')) THEN
230
              KK = (N* (N+1))/2
231
              IF (INCX.EQ.1) THEN
232
                  DO 110 J = N,1,-1
233
                      TEMP = X(J)
234
                      K = KK - 1
235
                      IF (NOCONJ) THEN
236
                          IF (NOUNIT) TEMP = TEMP*AP(KK)
237
                          DO 90 I = J - 1,1,-1
238
                              TEMP = TEMP + AP(K)*X(I)
239
                              K = K - 1
240
   90                     CONTINUE
241
                      ELSE
242
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
243
                          DO 100 I = J - 1,1,-1
244
                              TEMP = TEMP + CONJG(AP(K))*X(I)
245
                              K = K - 1
246
  100                     CONTINUE
247
                      END IF
248
                      X(J) = TEMP
249
                      KK = KK - J
250
  110             CONTINUE
251
              ELSE
252
                  JX = KX + (N-1)*INCX
253
                  DO 140 J = N,1,-1
254
                      TEMP = X(JX)
255
                      IX = JX
256
                      IF (NOCONJ) THEN
257
                          IF (NOUNIT) TEMP = TEMP*AP(KK)
258
                          DO 120 K = KK - 1,KK - J + 1,-1
259
                              IX = IX - INCX
260
                              TEMP = TEMP + AP(K)*X(IX)
261
  120                     CONTINUE
262
                      ELSE
263
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
264
                          DO 130 K = KK - 1,KK - J + 1,-1
265
                              IX = IX - INCX
266
                              TEMP = TEMP + CONJG(AP(K))*X(IX)
267
  130                     CONTINUE
268
                      END IF
269
                      X(JX) = TEMP
270
                      JX = JX - INCX
271
                      KK = KK - J
272
  140             CONTINUE
273
              END IF
274
          ELSE
275
              KK = 1
276
              IF (INCX.EQ.1) THEN
277
                  DO 170 J = 1,N
278
                      TEMP = X(J)
279
                      K = KK + 1
280
                      IF (NOCONJ) THEN
281
                          IF (NOUNIT) TEMP = TEMP*AP(KK)
282
                          DO 150 I = J + 1,N
283
                              TEMP = TEMP + AP(K)*X(I)
284
                              K = K + 1
285
  150                     CONTINUE
286
                      ELSE
287
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
288
                          DO 160 I = J + 1,N
289
                              TEMP = TEMP + CONJG(AP(K))*X(I)
290
                              K = K + 1
291
  160                     CONTINUE
292
                      END IF
293
                      X(J) = TEMP
294
                      KK = KK + (N-J+1)
295
  170             CONTINUE
296
              ELSE
297
                  JX = KX
298
                  DO 200 J = 1,N
299
                      TEMP = X(JX)
300
                      IX = JX
301
                      IF (NOCONJ) THEN
302
                          IF (NOUNIT) TEMP = TEMP*AP(KK)
303
                          DO 180 K = KK + 1,KK + N - J
304
                              IX = IX + INCX
305
                              TEMP = TEMP + AP(K)*X(IX)
306
  180                     CONTINUE
307
                      ELSE
308
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK))
309
                          DO 190 K = KK + 1,KK + N - J
310
                              IX = IX + INCX
311
                              TEMP = TEMP + CONJG(AP(K))*X(IX)
312
  190                     CONTINUE
313
                      END IF
314
                      X(JX) = TEMP
315
                      JX = JX + INCX
316
                      KK = KK + (N-J+1)
317
  200             CONTINUE
318
              END IF
319
          END IF
320
      END IF
321
*
322
      RETURN
323
*
324
*     End of CTPMV .
325
*
326
      END