root / src / Calc_Xprim.f90 @ 4
Historique | Voir | Annoter | Télécharger (6,81 ko)
1 |
SUBROUTINE Calc_Xprim(nat,x,y,z,Coordinate,NPrim,XPrimitive,XPrimRef) |
---|---|
2 |
! |
3 |
! This subroutine uses the description of a list of Coordinates |
4 |
! to compute the values of the coordinates for a given geometry. |
5 |
! |
6 |
!!!!!!!!!! |
7 |
! Input: |
8 |
! Na: INTEGER, Number of atoms |
9 |
! x,y,z(Na): REAL, cartesian coordinates of the considered geometry |
10 |
! Coordinate (Pointer(ListCoord)): description of the wanted coordiantes |
11 |
! NPrim, INTEGER: Number of coordinates to compute |
12 |
! |
13 |
! Optional: XPrimRef(NPrim) REAL: array that contains coordinates values for |
14 |
! a former geometry. Useful for Dihedral angles evolution... |
15 |
|
16 |
!!!!!!!!!!! |
17 |
! Output: |
18 |
! XPrimimite(NPrim) REAL: array that will contain the values of the coordinates |
19 |
! |
20 |
!!!!!!!!! |
21 |
|
22 |
Use VarTypes |
23 |
Use Io_module |
24 |
Use Path_module, only : pi |
25 |
|
26 |
IMPLICIT NONE |
27 |
|
28 |
Type (ListCoord), POINTER :: Coordinate |
29 |
INTEGER(KINT), INTENT(IN) :: Nat,NPrim |
30 |
REAL(KREAL), INTENT(IN) :: x(Nat), y(Nat), z(Nat) |
31 |
REAL(KREAL), INTENT(IN), OPTIONAL :: XPrimRef(NPrim) |
32 |
REAL(KREAL), INTENT(OUT) :: XPrimitive(NPrim) |
33 |
|
34 |
|
35 |
Type (ListCoord), POINTER :: ScanCoord |
36 |
|
37 |
real(KREAL) :: vx,vy,vz,dist, Norm |
38 |
real(KREAL) :: vx1,vy1,vz1,norm1 |
39 |
real(KREAL) :: vx2,vy2,vz2,norm2 |
40 |
real(KREAL) :: vx3,vy3,vz3,norm3 |
41 |
real(KREAL) :: vx4,vy4,vz4,norm4 |
42 |
real(KREAL) :: vx5,vy5,vz5,norm5 |
43 |
real(KREAL) :: val,val_d, Q, T |
44 |
|
45 |
INTEGER(KINT) :: I,J, n1,n2,n3,n4 |
46 |
|
47 |
REAL(KREAL) :: sAngleIatIKat, sAngleIIatLat |
48 |
REAL(KREAL) :: DiheTmp |
49 |
|
50 |
LOGICAL :: debug, debugPFL |
51 |
|
52 |
INTERFACE |
53 |
function valid(string) result (isValid) |
54 |
CHARACTER(*), intent(in) :: string |
55 |
logical :: isValid |
56 |
END function VALID |
57 |
|
58 |
FUNCTION angle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
59 |
use Path_module, only : Pi,KINT, KREAL |
60 |
real(KREAL) :: v1x,v1y,v1z,norm1 |
61 |
real(KREAL) :: v2x,v2y,v2z,norm2 |
62 |
real(KREAL) :: angle |
63 |
END FUNCTION ANGLE |
64 |
|
65 |
FUNCTION SinAngle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
66 |
use Path_module, only : Pi,KINT, KREAL |
67 |
real(KREAL) :: v1x,v1y,v1z,norm1 |
68 |
real(KREAL) :: v2x,v2y,v2z,norm2 |
69 |
real(KREAL) :: SinAngle |
70 |
END FUNCTION SINANGLE |
71 |
|
72 |
|
73 |
FUNCTION angle_d(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2,v3x,v3y,v3z,norm3) |
74 |
use Path_module, only : Pi,KINT, KREAL |
75 |
real(KREAL) :: v1x,v1y,v1z,norm1 |
76 |
real(KREAL) :: v2x,v2y,v2z,norm2 |
77 |
real(KREAL) :: v3x,v3y,v3z,norm3 |
78 |
real(KREAL) :: angle_d,ca,sa |
79 |
END FUNCTION ANGLE_D |
80 |
|
81 |
END INTERFACE |
82 |
|
83 |
|
84 |
debug=valid("Calc_Xprim") |
85 |
debugPFL=valid("BakerPFL") |
86 |
if (debug) WRITE(*,*) "============= Entering Cal_XPrim ==============" |
87 |
|
88 |
|
89 |
IF (debug) THEN |
90 |
WRITE(*,*) "DBG Calc_Xprim, geom" |
91 |
DO I=1,Nat |
92 |
WRITE(*,'(1X,I5,3(1X,F15.3))') I,X(I),y(i),z(i) |
93 |
END DO |
94 |
WRITE(*,*) "XPrimRef" |
95 |
WRITE(*,'(15(1X,F10.6))') XPrimRef |
96 |
END IF |
97 |
|
98 |
|
99 |
! WRITE(*,*) "Coordinate:",associated(Coordinate) |
100 |
|
101 |
ScanCoord=>Coordinate |
102 |
|
103 |
! WRITE(*,*) "ScanCoord:",associated(ScanCoord),ScanCoord%Type |
104 |
|
105 |
! WRITE(*,*) "coucou" |
106 |
I=0 ! index for the NPrim (NPrim is the number of primitive coordinates). |
107 |
DO WHILE (Associated(ScanCoord%next)) |
108 |
I=I+1 |
109 |
! WRITE(*,*) i |
110 |
SELECT CASE (ScanCoord%Type) |
111 |
CASE ('BOND') |
112 |
Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
113 |
Xprimitive(I) = Norm2 |
114 |
CASE ('ANGLE') |
115 |
Call vecteur(ScanCoord%At2,ScanCoord%At3,x,y,z,vx1,vy1,vz1,Norm1) |
116 |
Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
117 |
Xprimitive(I) = angle(vx1,vy1,vz1,Norm1,vx2,vy2,vz2,Norm2)*Pi/180. |
118 |
CASE ('DIHEDRAL') |
119 |
Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx1,vy1,vz1,Norm1) |
120 |
Call vecteur(ScanCoord%At2,ScanCoord%At3,x,y,z,vx2,vy2,vz2,Norm2) |
121 |
Call vecteur(ScanCoord%At3,ScanCoord%At4,x,y,z,vx3,vy3,vz3,Norm3) |
122 |
Call produit_vect(vx1,vy1,vz1,norm1,vx2,vy2,vz2,norm2, & |
123 |
vx4,vy4,vz4,norm4) |
124 |
Call produit_vect(vx3,vy3,vz3,norm3,vx2,vy2,vz2,norm2, & |
125 |
vx5,vy5,vz5,norm5) |
126 |
|
127 |
DiheTmp= angle_d(vx4,vy4,vz4,norm4,vx5,vy5,vz5,norm5, & |
128 |
vx2,vy2,vz2,norm2) |
129 |
Xprimitive(I) = DiheTmp*Pi/180. |
130 |
! PFL 15th March 2008 -> |
131 |
! I think that the test on changes less than Pi should be enough |
132 |
!! We treat large dihedral angles differently as +180=-180 mathematically and physically |
133 |
!! but this causes lots of troubles when converting baker to cart. |
134 |
!! So we ensure that large dihedral angles always have the same sign |
135 |
! if (abs(ScanCoord%SignDihedral).NE.1) THEN |
136 |
! ScanCoord%SignDihedral=Int(Sign(1.D0,DiheTmp)) |
137 |
! ELSE |
138 |
! If ((abs(DiheTmp).GE.170.D0).AND.(Sign(1.,DiheTmp)*ScanCoord%SignDihedral<0)) THEN |
139 |
! Xprimitive(I) = DiheTmp*Pi/180.+ ScanCoord%SignDihedral*2.*Pi |
140 |
! END IF |
141 |
! END IF |
142 |
!!!! <- PFL 15th March 2008 |
143 |
! Another test... will all this be consistent ??? |
144 |
! We want the shortest path, so we check that the change in dihedral angles is less than Pi: |
145 |
IF (Present(XPrimRef)) THEN |
146 |
IF (abs(Xprimitive(I)-XPrimRef(I)).GE.Pi) THEN |
147 |
if (debug) THEN |
148 |
WRITE(*,*) "Pb dihedral, i,Xprimivite,XPrimref=",i,XPrimitive(I),XPrimRef(I) |
149 |
WRITE(*,*) "In deg Xprimivite,XPrimref=",XPrimitive(I)*180./Pi,XPrimRef(I)*180/Pi |
150 |
END IF |
151 |
if ((Xprimitive(I)-XPrimRef(I)).GE.Pi) THEN |
152 |
Xprimitive(I)=Xprimitive(I)-2.d0*Pi |
153 |
ELSE |
154 |
Xprimitive(I)=Xprimitive(I)+2.d0*Pi |
155 |
END IF |
156 |
END IF |
157 |
if (debug) WRITE(*,*) " New Xprimivite",XPrimitive(I),XPrimitive(I)*180./Pi |
158 |
END IF |
159 |
END SELECT |
160 |
ScanCoord => ScanCoord%next |
161 |
END DO ! matches DO WHILE (Associated(ScanCoord%next)) |
162 |
|
163 |
|
164 |
|
165 |
IF (debug) THEN |
166 |
WRITE(*,*) "DBG Calc_Xprim Values" |
167 |
|
168 |
ScanCoord=>Coordinate |
169 |
I=0 ! index for the NPrim (NPrim is the number of primitive coordinates). |
170 |
DO WHILE (Associated(ScanCoord%next)) |
171 |
I=I+1 |
172 |
SELECT CASE (ScanCoord%Type) |
173 |
CASE ('BOND') |
174 |
WRITE(*,'(1X,I3,":",I5," - ",I5," = ",F15.6)') I,ScanCoord%At1,ScanCoord%At2,Xprimitive(I) |
175 |
CASE ('ANGLE') |
176 |
WRITE(*,'(1X,I3,":",I5," - ",I5," - ",I5," = ",F15.6)') I,ScanCoord%At1, & |
177 |
ScanCoord%At2, ScanCoord%At3,Xprimitive(I)*180./Pi |
178 |
CASE ('DIHEDRAL') |
179 |
WRITE(*,'(1X,I3,":",I5," - ",I5," - ",I5," - ",I5," = ",F15.6)') I,ScanCoord%At1,& |
180 |
ScanCoord%At2, ScanCoord%At3,ScanCoord%At4,Xprimitive(I)*180./Pi |
181 |
END SELECT |
182 |
ScanCoord => ScanCoord%next |
183 |
END DO ! matches DO WHILE (Associated(ScanCoord%next)) |
184 |
END IF |
185 |
if (debug) WRITE(*,*) "============= Cal_XPrim OVER ==============" |
186 |
END SUBROUTINE Calc_Xprim |