Statistiques
| Révision :

root / src / blas / stbmv.f @ 4

Historique | Voir | Annoter | Télécharger (10,71 ko)

1 1 equemene
      SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      INTEGER INCX,K,LDA,N
4 1 equemene
      CHARACTER DIAG,TRANS,UPLO
5 1 equemene
*     ..
6 1 equemene
*     .. Array Arguments ..
7 1 equemene
      REAL A(LDA,*),X(*)
8 1 equemene
*     ..
9 1 equemene
*
10 1 equemene
*  Purpose
11 1 equemene
*  =======
12 1 equemene
*
13 1 equemene
*  STBMV  performs one of the matrix-vector operations
14 1 equemene
*
15 1 equemene
*     x := A*x,   or   x := A'*x,
16 1 equemene
*
17 1 equemene
*  where x is an n element vector and  A is an n by n unit, or non-unit,
18 1 equemene
*  upper or lower triangular band matrix, with ( k + 1 ) diagonals.
19 1 equemene
*
20 1 equemene
*  Arguments
21 1 equemene
*  ==========
22 1 equemene
*
23 1 equemene
*  UPLO   - CHARACTER*1.
24 1 equemene
*           On entry, UPLO specifies whether the matrix is an upper or
25 1 equemene
*           lower triangular matrix as follows:
26 1 equemene
*
27 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
28 1 equemene
*
29 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
30 1 equemene
*
31 1 equemene
*           Unchanged on exit.
32 1 equemene
*
33 1 equemene
*  TRANS  - CHARACTER*1.
34 1 equemene
*           On entry, TRANS specifies the operation to be performed as
35 1 equemene
*           follows:
36 1 equemene
*
37 1 equemene
*              TRANS = 'N' or 'n'   x := A*x.
38 1 equemene
*
39 1 equemene
*              TRANS = 'T' or 't'   x := A'*x.
40 1 equemene
*
41 1 equemene
*              TRANS = 'C' or 'c'   x := A'*x.
42 1 equemene
*
43 1 equemene
*           Unchanged on exit.
44 1 equemene
*
45 1 equemene
*  DIAG   - CHARACTER*1.
46 1 equemene
*           On entry, DIAG specifies whether or not A is unit
47 1 equemene
*           triangular as follows:
48 1 equemene
*
49 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
50 1 equemene
*
51 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
52 1 equemene
*                                  triangular.
53 1 equemene
*
54 1 equemene
*           Unchanged on exit.
55 1 equemene
*
56 1 equemene
*  N      - INTEGER.
57 1 equemene
*           On entry, N specifies the order of the matrix A.
58 1 equemene
*           N must be at least zero.
59 1 equemene
*           Unchanged on exit.
60 1 equemene
*
61 1 equemene
*  K      - INTEGER.
62 1 equemene
*           On entry with UPLO = 'U' or 'u', K specifies the number of
63 1 equemene
*           super-diagonals of the matrix A.
64 1 equemene
*           On entry with UPLO = 'L' or 'l', K specifies the number of
65 1 equemene
*           sub-diagonals of the matrix A.
66 1 equemene
*           K must satisfy  0 .le. K.
67 1 equemene
*           Unchanged on exit.
68 1 equemene
*
69 1 equemene
*  A      - REAL             array of DIMENSION ( LDA, n ).
70 1 equemene
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
71 1 equemene
*           by n part of the array A must contain the upper triangular
72 1 equemene
*           band part of the matrix of coefficients, supplied column by
73 1 equemene
*           column, with the leading diagonal of the matrix in row
74 1 equemene
*           ( k + 1 ) of the array, the first super-diagonal starting at
75 1 equemene
*           position 2 in row k, and so on. The top left k by k triangle
76 1 equemene
*           of the array A is not referenced.
77 1 equemene
*           The following program segment will transfer an upper
78 1 equemene
*           triangular band matrix from conventional full matrix storage
79 1 equemene
*           to band storage:
80 1 equemene
*
81 1 equemene
*                 DO 20, J = 1, N
82 1 equemene
*                    M = K + 1 - J
83 1 equemene
*                    DO 10, I = MAX( 1, J - K ), J
84 1 equemene
*                       A( M + I, J ) = matrix( I, J )
85 1 equemene
*              10    CONTINUE
86 1 equemene
*              20 CONTINUE
87 1 equemene
*
88 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
89 1 equemene
*           by n part of the array A must contain the lower triangular
90 1 equemene
*           band part of the matrix of coefficients, supplied column by
91 1 equemene
*           column, with the leading diagonal of the matrix in row 1 of
92 1 equemene
*           the array, the first sub-diagonal starting at position 1 in
93 1 equemene
*           row 2, and so on. The bottom right k by k triangle of the
94 1 equemene
*           array A is not referenced.
95 1 equemene
*           The following program segment will transfer a lower
96 1 equemene
*           triangular band matrix from conventional full matrix storage
97 1 equemene
*           to band storage:
98 1 equemene
*
99 1 equemene
*                 DO 20, J = 1, N
100 1 equemene
*                    M = 1 - J
101 1 equemene
*                    DO 10, I = J, MIN( N, J + K )
102 1 equemene
*                       A( M + I, J ) = matrix( I, J )
103 1 equemene
*              10    CONTINUE
104 1 equemene
*              20 CONTINUE
105 1 equemene
*
106 1 equemene
*           Note that when DIAG = 'U' or 'u' the elements of the array A
107 1 equemene
*           corresponding to the diagonal elements of the matrix are not
108 1 equemene
*           referenced, but are assumed to be unity.
109 1 equemene
*           Unchanged on exit.
110 1 equemene
*
111 1 equemene
*  LDA    - INTEGER.
112 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
113 1 equemene
*           in the calling (sub) program. LDA must be at least
114 1 equemene
*           ( k + 1 ).
115 1 equemene
*           Unchanged on exit.
116 1 equemene
*
117 1 equemene
*  X      - REAL             array of dimension at least
118 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
119 1 equemene
*           Before entry, the incremented array X must contain the n
120 1 equemene
*           element vector x. On exit, X is overwritten with the
121 1 equemene
*           tranformed vector x.
122 1 equemene
*
123 1 equemene
*  INCX   - INTEGER.
124 1 equemene
*           On entry, INCX specifies the increment for the elements of
125 1 equemene
*           X. INCX must not be zero.
126 1 equemene
*           Unchanged on exit.
127 1 equemene
*
128 1 equemene
*
129 1 equemene
*  Level 2 Blas routine.
130 1 equemene
*
131 1 equemene
*  -- Written on 22-October-1986.
132 1 equemene
*     Jack Dongarra, Argonne National Lab.
133 1 equemene
*     Jeremy Du Croz, Nag Central Office.
134 1 equemene
*     Sven Hammarling, Nag Central Office.
135 1 equemene
*     Richard Hanson, Sandia National Labs.
136 1 equemene
*
137 1 equemene
*
138 1 equemene
*     .. Parameters ..
139 1 equemene
      REAL ZERO
140 1 equemene
      PARAMETER (ZERO=0.0E+0)
141 1 equemene
*     ..
142 1 equemene
*     .. Local Scalars ..
143 1 equemene
      REAL TEMP
144 1 equemene
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
145 1 equemene
      LOGICAL NOUNIT
146 1 equemene
*     ..
147 1 equemene
*     .. External Functions ..
148 1 equemene
      LOGICAL LSAME
149 1 equemene
      EXTERNAL LSAME
150 1 equemene
*     ..
151 1 equemene
*     .. External Subroutines ..
152 1 equemene
      EXTERNAL XERBLA
153 1 equemene
*     ..
154 1 equemene
*     .. Intrinsic Functions ..
155 1 equemene
      INTRINSIC MAX,MIN
156 1 equemene
*     ..
157 1 equemene
*
158 1 equemene
*     Test the input parameters.
159 1 equemene
*
160 1 equemene
      INFO = 0
161 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
162 1 equemene
          INFO = 1
163 1 equemene
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
164 1 equemene
     +         .NOT.LSAME(TRANS,'C')) THEN
165 1 equemene
          INFO = 2
166 1 equemene
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
167 1 equemene
          INFO = 3
168 1 equemene
      ELSE IF (N.LT.0) THEN
169 1 equemene
          INFO = 4
170 1 equemene
      ELSE IF (K.LT.0) THEN
171 1 equemene
          INFO = 5
172 1 equemene
      ELSE IF (LDA.LT. (K+1)) THEN
173 1 equemene
          INFO = 7
174 1 equemene
      ELSE IF (INCX.EQ.0) THEN
175 1 equemene
          INFO = 9
176 1 equemene
      END IF
177 1 equemene
      IF (INFO.NE.0) THEN
178 1 equemene
          CALL XERBLA('STBMV ',INFO)
179 1 equemene
          RETURN
180 1 equemene
      END IF
181 1 equemene
*
182 1 equemene
*     Quick return if possible.
183 1 equemene
*
184 1 equemene
      IF (N.EQ.0) RETURN
185 1 equemene
*
186 1 equemene
      NOUNIT = LSAME(DIAG,'N')
187 1 equemene
*
188 1 equemene
*     Set up the start point in X if the increment is not unity. This
189 1 equemene
*     will be  ( N - 1 )*INCX   too small for descending loops.
190 1 equemene
*
191 1 equemene
      IF (INCX.LE.0) THEN
192 1 equemene
          KX = 1 - (N-1)*INCX
193 1 equemene
      ELSE IF (INCX.NE.1) THEN
194 1 equemene
          KX = 1
195 1 equemene
      END IF
196 1 equemene
*
197 1 equemene
*     Start the operations. In this version the elements of A are
198 1 equemene
*     accessed sequentially with one pass through A.
199 1 equemene
*
200 1 equemene
      IF (LSAME(TRANS,'N')) THEN
201 1 equemene
*
202 1 equemene
*         Form  x := A*x.
203 1 equemene
*
204 1 equemene
          IF (LSAME(UPLO,'U')) THEN
205 1 equemene
              KPLUS1 = K + 1
206 1 equemene
              IF (INCX.EQ.1) THEN
207 1 equemene
                  DO 20 J = 1,N
208 1 equemene
                      IF (X(J).NE.ZERO) THEN
209 1 equemene
                          TEMP = X(J)
210 1 equemene
                          L = KPLUS1 - J
211 1 equemene
                          DO 10 I = MAX(1,J-K),J - 1
212 1 equemene
                              X(I) = X(I) + TEMP*A(L+I,J)
213 1 equemene
   10                     CONTINUE
214 1 equemene
                          IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
215 1 equemene
                      END IF
216 1 equemene
   20             CONTINUE
217 1 equemene
              ELSE
218 1 equemene
                  JX = KX
219 1 equemene
                  DO 40 J = 1,N
220 1 equemene
                      IF (X(JX).NE.ZERO) THEN
221 1 equemene
                          TEMP = X(JX)
222 1 equemene
                          IX = KX
223 1 equemene
                          L = KPLUS1 - J
224 1 equemene
                          DO 30 I = MAX(1,J-K),J - 1
225 1 equemene
                              X(IX) = X(IX) + TEMP*A(L+I,J)
226 1 equemene
                              IX = IX + INCX
227 1 equemene
   30                     CONTINUE
228 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
229 1 equemene
                      END IF
230 1 equemene
                      JX = JX + INCX
231 1 equemene
                      IF (J.GT.K) KX = KX + INCX
232 1 equemene
   40             CONTINUE
233 1 equemene
              END IF
234 1 equemene
          ELSE
235 1 equemene
              IF (INCX.EQ.1) THEN
236 1 equemene
                  DO 60 J = N,1,-1
237 1 equemene
                      IF (X(J).NE.ZERO) THEN
238 1 equemene
                          TEMP = X(J)
239 1 equemene
                          L = 1 - J
240 1 equemene
                          DO 50 I = MIN(N,J+K),J + 1,-1
241 1 equemene
                              X(I) = X(I) + TEMP*A(L+I,J)
242 1 equemene
   50                     CONTINUE
243 1 equemene
                          IF (NOUNIT) X(J) = X(J)*A(1,J)
244 1 equemene
                      END IF
245 1 equemene
   60             CONTINUE
246 1 equemene
              ELSE
247 1 equemene
                  KX = KX + (N-1)*INCX
248 1 equemene
                  JX = KX
249 1 equemene
                  DO 80 J = N,1,-1
250 1 equemene
                      IF (X(JX).NE.ZERO) THEN
251 1 equemene
                          TEMP = X(JX)
252 1 equemene
                          IX = KX
253 1 equemene
                          L = 1 - J
254 1 equemene
                          DO 70 I = MIN(N,J+K),J + 1,-1
255 1 equemene
                              X(IX) = X(IX) + TEMP*A(L+I,J)
256 1 equemene
                              IX = IX - INCX
257 1 equemene
   70                     CONTINUE
258 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)*A(1,J)
259 1 equemene
                      END IF
260 1 equemene
                      JX = JX - INCX
261 1 equemene
                      IF ((N-J).GE.K) KX = KX - INCX
262 1 equemene
   80             CONTINUE
263 1 equemene
              END IF
264 1 equemene
          END IF
265 1 equemene
      ELSE
266 1 equemene
*
267 1 equemene
*        Form  x := A'*x.
268 1 equemene
*
269 1 equemene
          IF (LSAME(UPLO,'U')) THEN
270 1 equemene
              KPLUS1 = K + 1
271 1 equemene
              IF (INCX.EQ.1) THEN
272 1 equemene
                  DO 100 J = N,1,-1
273 1 equemene
                      TEMP = X(J)
274 1 equemene
                      L = KPLUS1 - J
275 1 equemene
                      IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
276 1 equemene
                      DO 90 I = J - 1,MAX(1,J-K),-1
277 1 equemene
                          TEMP = TEMP + A(L+I,J)*X(I)
278 1 equemene
   90                 CONTINUE
279 1 equemene
                      X(J) = TEMP
280 1 equemene
  100             CONTINUE
281 1 equemene
              ELSE
282 1 equemene
                  KX = KX + (N-1)*INCX
283 1 equemene
                  JX = KX
284 1 equemene
                  DO 120 J = N,1,-1
285 1 equemene
                      TEMP = X(JX)
286 1 equemene
                      KX = KX - INCX
287 1 equemene
                      IX = KX
288 1 equemene
                      L = KPLUS1 - J
289 1 equemene
                      IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
290 1 equemene
                      DO 110 I = J - 1,MAX(1,J-K),-1
291 1 equemene
                          TEMP = TEMP + A(L+I,J)*X(IX)
292 1 equemene
                          IX = IX - INCX
293 1 equemene
  110                 CONTINUE
294 1 equemene
                      X(JX) = TEMP
295 1 equemene
                      JX = JX - INCX
296 1 equemene
  120             CONTINUE
297 1 equemene
              END IF
298 1 equemene
          ELSE
299 1 equemene
              IF (INCX.EQ.1) THEN
300 1 equemene
                  DO 140 J = 1,N
301 1 equemene
                      TEMP = X(J)
302 1 equemene
                      L = 1 - J
303 1 equemene
                      IF (NOUNIT) TEMP = TEMP*A(1,J)
304 1 equemene
                      DO 130 I = J + 1,MIN(N,J+K)
305 1 equemene
                          TEMP = TEMP + A(L+I,J)*X(I)
306 1 equemene
  130                 CONTINUE
307 1 equemene
                      X(J) = TEMP
308 1 equemene
  140             CONTINUE
309 1 equemene
              ELSE
310 1 equemene
                  JX = KX
311 1 equemene
                  DO 160 J = 1,N
312 1 equemene
                      TEMP = X(JX)
313 1 equemene
                      KX = KX + INCX
314 1 equemene
                      IX = KX
315 1 equemene
                      L = 1 - J
316 1 equemene
                      IF (NOUNIT) TEMP = TEMP*A(1,J)
317 1 equemene
                      DO 150 I = J + 1,MIN(N,J+K)
318 1 equemene
                          TEMP = TEMP + A(L+I,J)*X(IX)
319 1 equemene
                          IX = IX + INCX
320 1 equemene
  150                 CONTINUE
321 1 equemene
                      X(JX) = TEMP
322 1 equemene
                      JX = JX + INCX
323 1 equemene
  160             CONTINUE
324 1 equemene
              END IF
325 1 equemene
          END IF
326 1 equemene
      END IF
327 1 equemene
*
328 1 equemene
      RETURN
329 1 equemene
*
330 1 equemene
*     End of STBMV .
331 1 equemene
*
332 1 equemene
      END