root / src / blas / sgbmv.f @ 4
Historique | Voir | Annoter | Télécharger (8,76 ko)
1 | 1 | equemene | SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | REAL ALPHA,BETA |
4 | 1 | equemene | INTEGER INCX,INCY,KL,KU,LDA,M,N |
5 | 1 | equemene | CHARACTER TRANS |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | REAL A(LDA,*),X(*),Y(*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * SGBMV performs one of the matrix-vector operations |
15 | 1 | equemene | * |
16 | 1 | equemene | * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
17 | 1 | equemene | * |
18 | 1 | equemene | * where alpha and beta are scalars, x and y are vectors and A is an |
19 | 1 | equemene | * m by n band matrix, with kl sub-diagonals and ku super-diagonals. |
20 | 1 | equemene | * |
21 | 1 | equemene | * Arguments |
22 | 1 | equemene | * ========== |
23 | 1 | equemene | * |
24 | 1 | equemene | * TRANS - CHARACTER*1. |
25 | 1 | equemene | * On entry, TRANS specifies the operation to be performed as |
26 | 1 | equemene | * follows: |
27 | 1 | equemene | * |
28 | 1 | equemene | * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
29 | 1 | equemene | * |
30 | 1 | equemene | * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
31 | 1 | equemene | * |
32 | 1 | equemene | * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. |
33 | 1 | equemene | * |
34 | 1 | equemene | * Unchanged on exit. |
35 | 1 | equemene | * |
36 | 1 | equemene | * M - INTEGER. |
37 | 1 | equemene | * On entry, M specifies the number of rows of the matrix A. |
38 | 1 | equemene | * M must be at least zero. |
39 | 1 | equemene | * Unchanged on exit. |
40 | 1 | equemene | * |
41 | 1 | equemene | * N - INTEGER. |
42 | 1 | equemene | * On entry, N specifies the number of columns of the matrix A. |
43 | 1 | equemene | * N must be at least zero. |
44 | 1 | equemene | * Unchanged on exit. |
45 | 1 | equemene | * |
46 | 1 | equemene | * KL - INTEGER. |
47 | 1 | equemene | * On entry, KL specifies the number of sub-diagonals of the |
48 | 1 | equemene | * matrix A. KL must satisfy 0 .le. KL. |
49 | 1 | equemene | * Unchanged on exit. |
50 | 1 | equemene | * |
51 | 1 | equemene | * KU - INTEGER. |
52 | 1 | equemene | * On entry, KU specifies the number of super-diagonals of the |
53 | 1 | equemene | * matrix A. KU must satisfy 0 .le. KU. |
54 | 1 | equemene | * Unchanged on exit. |
55 | 1 | equemene | * |
56 | 1 | equemene | * ALPHA - REAL . |
57 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
58 | 1 | equemene | * Unchanged on exit. |
59 | 1 | equemene | * |
60 | 1 | equemene | * A - REAL array of DIMENSION ( LDA, n ). |
61 | 1 | equemene | * Before entry, the leading ( kl + ku + 1 ) by n part of the |
62 | 1 | equemene | * array A must contain the matrix of coefficients, supplied |
63 | 1 | equemene | * column by column, with the leading diagonal of the matrix in |
64 | 1 | equemene | * row ( ku + 1 ) of the array, the first super-diagonal |
65 | 1 | equemene | * starting at position 2 in row ku, the first sub-diagonal |
66 | 1 | equemene | * starting at position 1 in row ( ku + 2 ), and so on. |
67 | 1 | equemene | * Elements in the array A that do not correspond to elements |
68 | 1 | equemene | * in the band matrix (such as the top left ku by ku triangle) |
69 | 1 | equemene | * are not referenced. |
70 | 1 | equemene | * The following program segment will transfer a band matrix |
71 | 1 | equemene | * from conventional full matrix storage to band storage: |
72 | 1 | equemene | * |
73 | 1 | equemene | * DO 20, J = 1, N |
74 | 1 | equemene | * K = KU + 1 - J |
75 | 1 | equemene | * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) |
76 | 1 | equemene | * A( K + I, J ) = matrix( I, J ) |
77 | 1 | equemene | * 10 CONTINUE |
78 | 1 | equemene | * 20 CONTINUE |
79 | 1 | equemene | * |
80 | 1 | equemene | * Unchanged on exit. |
81 | 1 | equemene | * |
82 | 1 | equemene | * LDA - INTEGER. |
83 | 1 | equemene | * On entry, LDA specifies the first dimension of A as declared |
84 | 1 | equemene | * in the calling (sub) program. LDA must be at least |
85 | 1 | equemene | * ( kl + ku + 1 ). |
86 | 1 | equemene | * Unchanged on exit. |
87 | 1 | equemene | * |
88 | 1 | equemene | * X - REAL array of DIMENSION at least |
89 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
90 | 1 | equemene | * and at least |
91 | 1 | equemene | * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
92 | 1 | equemene | * Before entry, the incremented array X must contain the |
93 | 1 | equemene | * vector x. |
94 | 1 | equemene | * Unchanged on exit. |
95 | 1 | equemene | * |
96 | 1 | equemene | * INCX - INTEGER. |
97 | 1 | equemene | * On entry, INCX specifies the increment for the elements of |
98 | 1 | equemene | * X. INCX must not be zero. |
99 | 1 | equemene | * Unchanged on exit. |
100 | 1 | equemene | * |
101 | 1 | equemene | * BETA - REAL . |
102 | 1 | equemene | * On entry, BETA specifies the scalar beta. When BETA is |
103 | 1 | equemene | * supplied as zero then Y need not be set on input. |
104 | 1 | equemene | * Unchanged on exit. |
105 | 1 | equemene | * |
106 | 1 | equemene | * Y - REAL array of DIMENSION at least |
107 | 1 | equemene | * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
108 | 1 | equemene | * and at least |
109 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
110 | 1 | equemene | * Before entry, the incremented array Y must contain the |
111 | 1 | equemene | * vector y. On exit, Y is overwritten by the updated vector y. |
112 | 1 | equemene | * |
113 | 1 | equemene | * INCY - INTEGER. |
114 | 1 | equemene | * On entry, INCY specifies the increment for the elements of |
115 | 1 | equemene | * Y. INCY must not be zero. |
116 | 1 | equemene | * Unchanged on exit. |
117 | 1 | equemene | * |
118 | 1 | equemene | * |
119 | 1 | equemene | * Level 2 Blas routine. |
120 | 1 | equemene | * |
121 | 1 | equemene | * -- Written on 22-October-1986. |
122 | 1 | equemene | * Jack Dongarra, Argonne National Lab. |
123 | 1 | equemene | * Jeremy Du Croz, Nag Central Office. |
124 | 1 | equemene | * Sven Hammarling, Nag Central Office. |
125 | 1 | equemene | * Richard Hanson, Sandia National Labs. |
126 | 1 | equemene | * |
127 | 1 | equemene | * .. Parameters .. |
128 | 1 | equemene | REAL ONE,ZERO |
129 | 1 | equemene | PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
130 | 1 | equemene | * .. |
131 | 1 | equemene | * .. Local Scalars .. |
132 | 1 | equemene | REAL TEMP |
133 | 1 | equemene | INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY |
134 | 1 | equemene | * .. |
135 | 1 | equemene | * .. External Functions .. |
136 | 1 | equemene | LOGICAL LSAME |
137 | 1 | equemene | EXTERNAL LSAME |
138 | 1 | equemene | * .. |
139 | 1 | equemene | * .. External Subroutines .. |
140 | 1 | equemene | EXTERNAL XERBLA |
141 | 1 | equemene | * .. |
142 | 1 | equemene | * .. Intrinsic Functions .. |
143 | 1 | equemene | INTRINSIC MAX,MIN |
144 | 1 | equemene | * .. |
145 | 1 | equemene | * |
146 | 1 | equemene | * Test the input parameters. |
147 | 1 | equemene | * |
148 | 1 | equemene | INFO = 0 |
149 | 1 | equemene | IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
150 | 1 | equemene | + .NOT.LSAME(TRANS,'C')) THEN |
151 | 1 | equemene | INFO = 1 |
152 | 1 | equemene | ELSE IF (M.LT.0) THEN |
153 | 1 | equemene | INFO = 2 |
154 | 1 | equemene | ELSE IF (N.LT.0) THEN |
155 | 1 | equemene | INFO = 3 |
156 | 1 | equemene | ELSE IF (KL.LT.0) THEN |
157 | 1 | equemene | INFO = 4 |
158 | 1 | equemene | ELSE IF (KU.LT.0) THEN |
159 | 1 | equemene | INFO = 5 |
160 | 1 | equemene | ELSE IF (LDA.LT. (KL+KU+1)) THEN |
161 | 1 | equemene | INFO = 8 |
162 | 1 | equemene | ELSE IF (INCX.EQ.0) THEN |
163 | 1 | equemene | INFO = 10 |
164 | 1 | equemene | ELSE IF (INCY.EQ.0) THEN |
165 | 1 | equemene | INFO = 13 |
166 | 1 | equemene | END IF |
167 | 1 | equemene | IF (INFO.NE.0) THEN |
168 | 1 | equemene | CALL XERBLA('SGBMV ',INFO) |
169 | 1 | equemene | RETURN |
170 | 1 | equemene | END IF |
171 | 1 | equemene | * |
172 | 1 | equemene | * Quick return if possible. |
173 | 1 | equemene | * |
174 | 1 | equemene | IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
175 | 1 | equemene | + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
176 | 1 | equemene | * |
177 | 1 | equemene | * Set LENX and LENY, the lengths of the vectors x and y, and set |
178 | 1 | equemene | * up the start points in X and Y. |
179 | 1 | equemene | * |
180 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
181 | 1 | equemene | LENX = N |
182 | 1 | equemene | LENY = M |
183 | 1 | equemene | ELSE |
184 | 1 | equemene | LENX = M |
185 | 1 | equemene | LENY = N |
186 | 1 | equemene | END IF |
187 | 1 | equemene | IF (INCX.GT.0) THEN |
188 | 1 | equemene | KX = 1 |
189 | 1 | equemene | ELSE |
190 | 1 | equemene | KX = 1 - (LENX-1)*INCX |
191 | 1 | equemene | END IF |
192 | 1 | equemene | IF (INCY.GT.0) THEN |
193 | 1 | equemene | KY = 1 |
194 | 1 | equemene | ELSE |
195 | 1 | equemene | KY = 1 - (LENY-1)*INCY |
196 | 1 | equemene | END IF |
197 | 1 | equemene | * |
198 | 1 | equemene | * Start the operations. In this version the elements of A are |
199 | 1 | equemene | * accessed sequentially with one pass through the band part of A. |
200 | 1 | equemene | * |
201 | 1 | equemene | * First form y := beta*y. |
202 | 1 | equemene | * |
203 | 1 | equemene | IF (BETA.NE.ONE) THEN |
204 | 1 | equemene | IF (INCY.EQ.1) THEN |
205 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
206 | 1 | equemene | DO 10 I = 1,LENY |
207 | 1 | equemene | Y(I) = ZERO |
208 | 1 | equemene | 10 CONTINUE |
209 | 1 | equemene | ELSE |
210 | 1 | equemene | DO 20 I = 1,LENY |
211 | 1 | equemene | Y(I) = BETA*Y(I) |
212 | 1 | equemene | 20 CONTINUE |
213 | 1 | equemene | END IF |
214 | 1 | equemene | ELSE |
215 | 1 | equemene | IY = KY |
216 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
217 | 1 | equemene | DO 30 I = 1,LENY |
218 | 1 | equemene | Y(IY) = ZERO |
219 | 1 | equemene | IY = IY + INCY |
220 | 1 | equemene | 30 CONTINUE |
221 | 1 | equemene | ELSE |
222 | 1 | equemene | DO 40 I = 1,LENY |
223 | 1 | equemene | Y(IY) = BETA*Y(IY) |
224 | 1 | equemene | IY = IY + INCY |
225 | 1 | equemene | 40 CONTINUE |
226 | 1 | equemene | END IF |
227 | 1 | equemene | END IF |
228 | 1 | equemene | END IF |
229 | 1 | equemene | IF (ALPHA.EQ.ZERO) RETURN |
230 | 1 | equemene | KUP1 = KU + 1 |
231 | 1 | equemene | IF (LSAME(TRANS,'N')) THEN |
232 | 1 | equemene | * |
233 | 1 | equemene | * Form y := alpha*A*x + y. |
234 | 1 | equemene | * |
235 | 1 | equemene | JX = KX |
236 | 1 | equemene | IF (INCY.EQ.1) THEN |
237 | 1 | equemene | DO 60 J = 1,N |
238 | 1 | equemene | IF (X(JX).NE.ZERO) THEN |
239 | 1 | equemene | TEMP = ALPHA*X(JX) |
240 | 1 | equemene | K = KUP1 - J |
241 | 1 | equemene | DO 50 I = MAX(1,J-KU),MIN(M,J+KL) |
242 | 1 | equemene | Y(I) = Y(I) + TEMP*A(K+I,J) |
243 | 1 | equemene | 50 CONTINUE |
244 | 1 | equemene | END IF |
245 | 1 | equemene | JX = JX + INCX |
246 | 1 | equemene | 60 CONTINUE |
247 | 1 | equemene | ELSE |
248 | 1 | equemene | DO 80 J = 1,N |
249 | 1 | equemene | IF (X(JX).NE.ZERO) THEN |
250 | 1 | equemene | TEMP = ALPHA*X(JX) |
251 | 1 | equemene | IY = KY |
252 | 1 | equemene | K = KUP1 - J |
253 | 1 | equemene | DO 70 I = MAX(1,J-KU),MIN(M,J+KL) |
254 | 1 | equemene | Y(IY) = Y(IY) + TEMP*A(K+I,J) |
255 | 1 | equemene | IY = IY + INCY |
256 | 1 | equemene | 70 CONTINUE |
257 | 1 | equemene | END IF |
258 | 1 | equemene | JX = JX + INCX |
259 | 1 | equemene | IF (J.GT.KU) KY = KY + INCY |
260 | 1 | equemene | 80 CONTINUE |
261 | 1 | equemene | END IF |
262 | 1 | equemene | ELSE |
263 | 1 | equemene | * |
264 | 1 | equemene | * Form y := alpha*A'*x + y. |
265 | 1 | equemene | * |
266 | 1 | equemene | JY = KY |
267 | 1 | equemene | IF (INCX.EQ.1) THEN |
268 | 1 | equemene | DO 100 J = 1,N |
269 | 1 | equemene | TEMP = ZERO |
270 | 1 | equemene | K = KUP1 - J |
271 | 1 | equemene | DO 90 I = MAX(1,J-KU),MIN(M,J+KL) |
272 | 1 | equemene | TEMP = TEMP + A(K+I,J)*X(I) |
273 | 1 | equemene | 90 CONTINUE |
274 | 1 | equemene | Y(JY) = Y(JY) + ALPHA*TEMP |
275 | 1 | equemene | JY = JY + INCY |
276 | 1 | equemene | 100 CONTINUE |
277 | 1 | equemene | ELSE |
278 | 1 | equemene | DO 120 J = 1,N |
279 | 1 | equemene | TEMP = ZERO |
280 | 1 | equemene | IX = KX |
281 | 1 | equemene | K = KUP1 - J |
282 | 1 | equemene | DO 110 I = MAX(1,J-KU),MIN(M,J+KL) |
283 | 1 | equemene | TEMP = TEMP + A(K+I,J)*X(IX) |
284 | 1 | equemene | IX = IX + INCX |
285 | 1 | equemene | 110 CONTINUE |
286 | 1 | equemene | Y(JY) = Y(JY) + ALPHA*TEMP |
287 | 1 | equemene | JY = JY + INCY |
288 | 1 | equemene | IF (J.GT.KU) KX = KX + INCX |
289 | 1 | equemene | 120 CONTINUE |
290 | 1 | equemene | END IF |
291 | 1 | equemene | END IF |
292 | 1 | equemene | * |
293 | 1 | equemene | RETURN |
294 | 1 | equemene | * |
295 | 1 | equemene | * End of SGBMV . |
296 | 1 | equemene | * |
297 | 1 | equemene | END |