Statistiques
| Révision :

root / src / blas / dspmv.f @ 4

Historique | Voir | Annoter | Télécharger (7,73 ko)

1 1 equemene
      SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      DOUBLE PRECISION ALPHA,BETA
4 1 equemene
      INTEGER INCX,INCY,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      DOUBLE PRECISION AP(*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  DSPMV  performs the matrix-vector operation
15 1 equemene
*
16 1 equemene
*     y := alpha*A*x + beta*y,
17 1 equemene
*
18 1 equemene
*  where alpha and beta are scalars, x and y are n element vectors and
19 1 equemene
*  A is an n by n symmetric matrix, supplied in packed form.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the matrix A is supplied in the packed
27 1 equemene
*           array AP as follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 equemene
*                                  supplied in AP.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 equemene
*                                  supplied in AP.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - DOUBLE PRECISION.
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  AP     - DOUBLE PRECISION array of DIMENSION at least
47 1 equemene
*           ( ( n*( n + 1 ) )/2 ).
48 1 equemene
*           Before entry with UPLO = 'U' or 'u', the array AP must
49 1 equemene
*           contain the upper triangular part of the symmetric matrix
50 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
51 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
52 1 equemene
*           and a( 2, 2 ) respectively, and so on.
53 1 equemene
*           Before entry with UPLO = 'L' or 'l', the array AP must
54 1 equemene
*           contain the lower triangular part of the symmetric matrix
55 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
56 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
57 1 equemene
*           and a( 3, 1 ) respectively, and so on.
58 1 equemene
*           Unchanged on exit.
59 1 equemene
*
60 1 equemene
*  X      - DOUBLE PRECISION array of dimension at least
61 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
62 1 equemene
*           Before entry, the incremented array X must contain the n
63 1 equemene
*           element vector x.
64 1 equemene
*           Unchanged on exit.
65 1 equemene
*
66 1 equemene
*  INCX   - INTEGER.
67 1 equemene
*           On entry, INCX specifies the increment for the elements of
68 1 equemene
*           X. INCX must not be zero.
69 1 equemene
*           Unchanged on exit.
70 1 equemene
*
71 1 equemene
*  BETA   - DOUBLE PRECISION.
72 1 equemene
*           On entry, BETA specifies the scalar beta. When BETA is
73 1 equemene
*           supplied as zero then Y need not be set on input.
74 1 equemene
*           Unchanged on exit.
75 1 equemene
*
76 1 equemene
*  Y      - DOUBLE PRECISION array of dimension at least
77 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
78 1 equemene
*           Before entry, the incremented array Y must contain the n
79 1 equemene
*           element vector y. On exit, Y is overwritten by the updated
80 1 equemene
*           vector y.
81 1 equemene
*
82 1 equemene
*  INCY   - INTEGER.
83 1 equemene
*           On entry, INCY specifies the increment for the elements of
84 1 equemene
*           Y. INCY must not be zero.
85 1 equemene
*           Unchanged on exit.
86 1 equemene
*
87 1 equemene
*
88 1 equemene
*  Level 2 Blas routine.
89 1 equemene
*
90 1 equemene
*  -- Written on 22-October-1986.
91 1 equemene
*     Jack Dongarra, Argonne National Lab.
92 1 equemene
*     Jeremy Du Croz, Nag Central Office.
93 1 equemene
*     Sven Hammarling, Nag Central Office.
94 1 equemene
*     Richard Hanson, Sandia National Labs.
95 1 equemene
*
96 1 equemene
*
97 1 equemene
*     .. Parameters ..
98 1 equemene
      DOUBLE PRECISION ONE,ZERO
99 1 equemene
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
100 1 equemene
*     ..
101 1 equemene
*     .. Local Scalars ..
102 1 equemene
      DOUBLE PRECISION TEMP1,TEMP2
103 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
104 1 equemene
*     ..
105 1 equemene
*     .. External Functions ..
106 1 equemene
      LOGICAL LSAME
107 1 equemene
      EXTERNAL LSAME
108 1 equemene
*     ..
109 1 equemene
*     .. External Subroutines ..
110 1 equemene
      EXTERNAL XERBLA
111 1 equemene
*     ..
112 1 equemene
*
113 1 equemene
*     Test the input parameters.
114 1 equemene
*
115 1 equemene
      INFO = 0
116 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
117 1 equemene
          INFO = 1
118 1 equemene
      ELSE IF (N.LT.0) THEN
119 1 equemene
          INFO = 2
120 1 equemene
      ELSE IF (INCX.EQ.0) THEN
121 1 equemene
          INFO = 6
122 1 equemene
      ELSE IF (INCY.EQ.0) THEN
123 1 equemene
          INFO = 9
124 1 equemene
      END IF
125 1 equemene
      IF (INFO.NE.0) THEN
126 1 equemene
          CALL XERBLA('DSPMV ',INFO)
127 1 equemene
          RETURN
128 1 equemene
      END IF
129 1 equemene
*
130 1 equemene
*     Quick return if possible.
131 1 equemene
*
132 1 equemene
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
133 1 equemene
*
134 1 equemene
*     Set up the start points in  X  and  Y.
135 1 equemene
*
136 1 equemene
      IF (INCX.GT.0) THEN
137 1 equemene
          KX = 1
138 1 equemene
      ELSE
139 1 equemene
          KX = 1 - (N-1)*INCX
140 1 equemene
      END IF
141 1 equemene
      IF (INCY.GT.0) THEN
142 1 equemene
          KY = 1
143 1 equemene
      ELSE
144 1 equemene
          KY = 1 - (N-1)*INCY
145 1 equemene
      END IF
146 1 equemene
*
147 1 equemene
*     Start the operations. In this version the elements of the array AP
148 1 equemene
*     are accessed sequentially with one pass through AP.
149 1 equemene
*
150 1 equemene
*     First form  y := beta*y.
151 1 equemene
*
152 1 equemene
      IF (BETA.NE.ONE) THEN
153 1 equemene
          IF (INCY.EQ.1) THEN
154 1 equemene
              IF (BETA.EQ.ZERO) THEN
155 1 equemene
                  DO 10 I = 1,N
156 1 equemene
                      Y(I) = ZERO
157 1 equemene
   10             CONTINUE
158 1 equemene
              ELSE
159 1 equemene
                  DO 20 I = 1,N
160 1 equemene
                      Y(I) = BETA*Y(I)
161 1 equemene
   20             CONTINUE
162 1 equemene
              END IF
163 1 equemene
          ELSE
164 1 equemene
              IY = KY
165 1 equemene
              IF (BETA.EQ.ZERO) THEN
166 1 equemene
                  DO 30 I = 1,N
167 1 equemene
                      Y(IY) = ZERO
168 1 equemene
                      IY = IY + INCY
169 1 equemene
   30             CONTINUE
170 1 equemene
              ELSE
171 1 equemene
                  DO 40 I = 1,N
172 1 equemene
                      Y(IY) = BETA*Y(IY)
173 1 equemene
                      IY = IY + INCY
174 1 equemene
   40             CONTINUE
175 1 equemene
              END IF
176 1 equemene
          END IF
177 1 equemene
      END IF
178 1 equemene
      IF (ALPHA.EQ.ZERO) RETURN
179 1 equemene
      KK = 1
180 1 equemene
      IF (LSAME(UPLO,'U')) THEN
181 1 equemene
*
182 1 equemene
*        Form  y  when AP contains the upper triangle.
183 1 equemene
*
184 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
185 1 equemene
              DO 60 J = 1,N
186 1 equemene
                  TEMP1 = ALPHA*X(J)
187 1 equemene
                  TEMP2 = ZERO
188 1 equemene
                  K = KK
189 1 equemene
                  DO 50 I = 1,J - 1
190 1 equemene
                      Y(I) = Y(I) + TEMP1*AP(K)
191 1 equemene
                      TEMP2 = TEMP2 + AP(K)*X(I)
192 1 equemene
                      K = K + 1
193 1 equemene
   50             CONTINUE
194 1 equemene
                  Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
195 1 equemene
                  KK = KK + J
196 1 equemene
   60         CONTINUE
197 1 equemene
          ELSE
198 1 equemene
              JX = KX
199 1 equemene
              JY = KY
200 1 equemene
              DO 80 J = 1,N
201 1 equemene
                  TEMP1 = ALPHA*X(JX)
202 1 equemene
                  TEMP2 = ZERO
203 1 equemene
                  IX = KX
204 1 equemene
                  IY = KY
205 1 equemene
                  DO 70 K = KK,KK + J - 2
206 1 equemene
                      Y(IY) = Y(IY) + TEMP1*AP(K)
207 1 equemene
                      TEMP2 = TEMP2 + AP(K)*X(IX)
208 1 equemene
                      IX = IX + INCX
209 1 equemene
                      IY = IY + INCY
210 1 equemene
   70             CONTINUE
211 1 equemene
                  Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
212 1 equemene
                  JX = JX + INCX
213 1 equemene
                  JY = JY + INCY
214 1 equemene
                  KK = KK + J
215 1 equemene
   80         CONTINUE
216 1 equemene
          END IF
217 1 equemene
      ELSE
218 1 equemene
*
219 1 equemene
*        Form  y  when AP contains the lower triangle.
220 1 equemene
*
221 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
222 1 equemene
              DO 100 J = 1,N
223 1 equemene
                  TEMP1 = ALPHA*X(J)
224 1 equemene
                  TEMP2 = ZERO
225 1 equemene
                  Y(J) = Y(J) + TEMP1*AP(KK)
226 1 equemene
                  K = KK + 1
227 1 equemene
                  DO 90 I = J + 1,N
228 1 equemene
                      Y(I) = Y(I) + TEMP1*AP(K)
229 1 equemene
                      TEMP2 = TEMP2 + AP(K)*X(I)
230 1 equemene
                      K = K + 1
231 1 equemene
   90             CONTINUE
232 1 equemene
                  Y(J) = Y(J) + ALPHA*TEMP2
233 1 equemene
                  KK = KK + (N-J+1)
234 1 equemene
  100         CONTINUE
235 1 equemene
          ELSE
236 1 equemene
              JX = KX
237 1 equemene
              JY = KY
238 1 equemene
              DO 120 J = 1,N
239 1 equemene
                  TEMP1 = ALPHA*X(JX)
240 1 equemene
                  TEMP2 = ZERO
241 1 equemene
                  Y(JY) = Y(JY) + TEMP1*AP(KK)
242 1 equemene
                  IX = JX
243 1 equemene
                  IY = JY
244 1 equemene
                  DO 110 K = KK + 1,KK + N - J
245 1 equemene
                      IX = IX + INCX
246 1 equemene
                      IY = IY + INCY
247 1 equemene
                      Y(IY) = Y(IY) + TEMP1*AP(K)
248 1 equemene
                      TEMP2 = TEMP2 + AP(K)*X(IX)
249 1 equemene
  110             CONTINUE
250 1 equemene
                  Y(JY) = Y(JY) + ALPHA*TEMP2
251 1 equemene
                  JX = JX + INCX
252 1 equemene
                  JY = JY + INCY
253 1 equemene
                  KK = KK + (N-J+1)
254 1 equemene
  120         CONTINUE
255 1 equemene
          END IF
256 1 equemene
      END IF
257 1 equemene
*
258 1 equemene
      RETURN
259 1 equemene
*
260 1 equemene
*     End of DSPMV .
261 1 equemene
*
262 1 equemene
      END