root / src / blas / chemv.f @ 4
Historique | Voir | Annoter | Télécharger (7,83 ko)
1 | 1 | equemene | SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | COMPLEX ALPHA,BETA |
4 | 1 | equemene | INTEGER INCX,INCY,LDA,N |
5 | 1 | equemene | CHARACTER UPLO |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | COMPLEX A(LDA,*),X(*),Y(*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * CHEMV performs the matrix-vector operation |
15 | 1 | equemene | * |
16 | 1 | equemene | * y := alpha*A*x + beta*y, |
17 | 1 | equemene | * |
18 | 1 | equemene | * where alpha and beta are scalars, x and y are n element vectors and |
19 | 1 | equemene | * A is an n by n hermitian matrix. |
20 | 1 | equemene | * |
21 | 1 | equemene | * Arguments |
22 | 1 | equemene | * ========== |
23 | 1 | equemene | * |
24 | 1 | equemene | * UPLO - CHARACTER*1. |
25 | 1 | equemene | * On entry, UPLO specifies whether the upper or lower |
26 | 1 | equemene | * triangular part of the array A is to be referenced as |
27 | 1 | equemene | * follows: |
28 | 1 | equemene | * |
29 | 1 | equemene | * UPLO = 'U' or 'u' Only the upper triangular part of A |
30 | 1 | equemene | * is to be referenced. |
31 | 1 | equemene | * |
32 | 1 | equemene | * UPLO = 'L' or 'l' Only the lower triangular part of A |
33 | 1 | equemene | * is to be referenced. |
34 | 1 | equemene | * |
35 | 1 | equemene | * Unchanged on exit. |
36 | 1 | equemene | * |
37 | 1 | equemene | * N - INTEGER. |
38 | 1 | equemene | * On entry, N specifies the order of the matrix A. |
39 | 1 | equemene | * N must be at least zero. |
40 | 1 | equemene | * Unchanged on exit. |
41 | 1 | equemene | * |
42 | 1 | equemene | * ALPHA - COMPLEX . |
43 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
44 | 1 | equemene | * Unchanged on exit. |
45 | 1 | equemene | * |
46 | 1 | equemene | * A - COMPLEX array of DIMENSION ( LDA, n ). |
47 | 1 | equemene | * Before entry with UPLO = 'U' or 'u', the leading n by n |
48 | 1 | equemene | * upper triangular part of the array A must contain the upper |
49 | 1 | equemene | * triangular part of the hermitian matrix and the strictly |
50 | 1 | equemene | * lower triangular part of A is not referenced. |
51 | 1 | equemene | * Before entry with UPLO = 'L' or 'l', the leading n by n |
52 | 1 | equemene | * lower triangular part of the array A must contain the lower |
53 | 1 | equemene | * triangular part of the hermitian matrix and the strictly |
54 | 1 | equemene | * upper triangular part of A is not referenced. |
55 | 1 | equemene | * Note that the imaginary parts of the diagonal elements need |
56 | 1 | equemene | * not be set and are assumed to be zero. |
57 | 1 | equemene | * Unchanged on exit. |
58 | 1 | equemene | * |
59 | 1 | equemene | * LDA - INTEGER. |
60 | 1 | equemene | * On entry, LDA specifies the first dimension of A as declared |
61 | 1 | equemene | * in the calling (sub) program. LDA must be at least |
62 | 1 | equemene | * max( 1, n ). |
63 | 1 | equemene | * Unchanged on exit. |
64 | 1 | equemene | * |
65 | 1 | equemene | * X - COMPLEX array of dimension at least |
66 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCX ) ). |
67 | 1 | equemene | * Before entry, the incremented array X must contain the n |
68 | 1 | equemene | * element vector x. |
69 | 1 | equemene | * Unchanged on exit. |
70 | 1 | equemene | * |
71 | 1 | equemene | * INCX - INTEGER. |
72 | 1 | equemene | * On entry, INCX specifies the increment for the elements of |
73 | 1 | equemene | * X. INCX must not be zero. |
74 | 1 | equemene | * Unchanged on exit. |
75 | 1 | equemene | * |
76 | 1 | equemene | * BETA - COMPLEX . |
77 | 1 | equemene | * On entry, BETA specifies the scalar beta. When BETA is |
78 | 1 | equemene | * supplied as zero then Y need not be set on input. |
79 | 1 | equemene | * Unchanged on exit. |
80 | 1 | equemene | * |
81 | 1 | equemene | * Y - COMPLEX array of dimension at least |
82 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCY ) ). |
83 | 1 | equemene | * Before entry, the incremented array Y must contain the n |
84 | 1 | equemene | * element vector y. On exit, Y is overwritten by the updated |
85 | 1 | equemene | * vector y. |
86 | 1 | equemene | * |
87 | 1 | equemene | * INCY - INTEGER. |
88 | 1 | equemene | * On entry, INCY specifies the increment for the elements of |
89 | 1 | equemene | * Y. INCY must not be zero. |
90 | 1 | equemene | * Unchanged on exit. |
91 | 1 | equemene | * |
92 | 1 | equemene | * |
93 | 1 | equemene | * Level 2 Blas routine. |
94 | 1 | equemene | * |
95 | 1 | equemene | * -- Written on 22-October-1986. |
96 | 1 | equemene | * Jack Dongarra, Argonne National Lab. |
97 | 1 | equemene | * Jeremy Du Croz, Nag Central Office. |
98 | 1 | equemene | * Sven Hammarling, Nag Central Office. |
99 | 1 | equemene | * Richard Hanson, Sandia National Labs. |
100 | 1 | equemene | * |
101 | 1 | equemene | * |
102 | 1 | equemene | * .. Parameters .. |
103 | 1 | equemene | COMPLEX ONE |
104 | 1 | equemene | PARAMETER (ONE= (1.0E+0,0.0E+0)) |
105 | 1 | equemene | COMPLEX ZERO |
106 | 1 | equemene | PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
107 | 1 | equemene | * .. |
108 | 1 | equemene | * .. Local Scalars .. |
109 | 1 | equemene | COMPLEX TEMP1,TEMP2 |
110 | 1 | equemene | INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY |
111 | 1 | equemene | * .. |
112 | 1 | equemene | * .. External Functions .. |
113 | 1 | equemene | LOGICAL LSAME |
114 | 1 | equemene | EXTERNAL LSAME |
115 | 1 | equemene | * .. |
116 | 1 | equemene | * .. External Subroutines .. |
117 | 1 | equemene | EXTERNAL XERBLA |
118 | 1 | equemene | * .. |
119 | 1 | equemene | * .. Intrinsic Functions .. |
120 | 1 | equemene | INTRINSIC CONJG,MAX,REAL |
121 | 1 | equemene | * .. |
122 | 1 | equemene | * |
123 | 1 | equemene | * Test the input parameters. |
124 | 1 | equemene | * |
125 | 1 | equemene | INFO = 0 |
126 | 1 | equemene | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
127 | 1 | equemene | INFO = 1 |
128 | 1 | equemene | ELSE IF (N.LT.0) THEN |
129 | 1 | equemene | INFO = 2 |
130 | 1 | equemene | ELSE IF (LDA.LT.MAX(1,N)) THEN |
131 | 1 | equemene | INFO = 5 |
132 | 1 | equemene | ELSE IF (INCX.EQ.0) THEN |
133 | 1 | equemene | INFO = 7 |
134 | 1 | equemene | ELSE IF (INCY.EQ.0) THEN |
135 | 1 | equemene | INFO = 10 |
136 | 1 | equemene | END IF |
137 | 1 | equemene | IF (INFO.NE.0) THEN |
138 | 1 | equemene | CALL XERBLA('CHEMV ',INFO) |
139 | 1 | equemene | RETURN |
140 | 1 | equemene | END IF |
141 | 1 | equemene | * |
142 | 1 | equemene | * Quick return if possible. |
143 | 1 | equemene | * |
144 | 1 | equemene | IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
145 | 1 | equemene | * |
146 | 1 | equemene | * Set up the start points in X and Y. |
147 | 1 | equemene | * |
148 | 1 | equemene | IF (INCX.GT.0) THEN |
149 | 1 | equemene | KX = 1 |
150 | 1 | equemene | ELSE |
151 | 1 | equemene | KX = 1 - (N-1)*INCX |
152 | 1 | equemene | END IF |
153 | 1 | equemene | IF (INCY.GT.0) THEN |
154 | 1 | equemene | KY = 1 |
155 | 1 | equemene | ELSE |
156 | 1 | equemene | KY = 1 - (N-1)*INCY |
157 | 1 | equemene | END IF |
158 | 1 | equemene | * |
159 | 1 | equemene | * Start the operations. In this version the elements of A are |
160 | 1 | equemene | * accessed sequentially with one pass through the triangular part |
161 | 1 | equemene | * of A. |
162 | 1 | equemene | * |
163 | 1 | equemene | * First form y := beta*y. |
164 | 1 | equemene | * |
165 | 1 | equemene | IF (BETA.NE.ONE) THEN |
166 | 1 | equemene | IF (INCY.EQ.1) THEN |
167 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
168 | 1 | equemene | DO 10 I = 1,N |
169 | 1 | equemene | Y(I) = ZERO |
170 | 1 | equemene | 10 CONTINUE |
171 | 1 | equemene | ELSE |
172 | 1 | equemene | DO 20 I = 1,N |
173 | 1 | equemene | Y(I) = BETA*Y(I) |
174 | 1 | equemene | 20 CONTINUE |
175 | 1 | equemene | END IF |
176 | 1 | equemene | ELSE |
177 | 1 | equemene | IY = KY |
178 | 1 | equemene | IF (BETA.EQ.ZERO) THEN |
179 | 1 | equemene | DO 30 I = 1,N |
180 | 1 | equemene | Y(IY) = ZERO |
181 | 1 | equemene | IY = IY + INCY |
182 | 1 | equemene | 30 CONTINUE |
183 | 1 | equemene | ELSE |
184 | 1 | equemene | DO 40 I = 1,N |
185 | 1 | equemene | Y(IY) = BETA*Y(IY) |
186 | 1 | equemene | IY = IY + INCY |
187 | 1 | equemene | 40 CONTINUE |
188 | 1 | equemene | END IF |
189 | 1 | equemene | END IF |
190 | 1 | equemene | END IF |
191 | 1 | equemene | IF (ALPHA.EQ.ZERO) RETURN |
192 | 1 | equemene | IF (LSAME(UPLO,'U')) THEN |
193 | 1 | equemene | * |
194 | 1 | equemene | * Form y when A is stored in upper triangle. |
195 | 1 | equemene | * |
196 | 1 | equemene | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
197 | 1 | equemene | DO 60 J = 1,N |
198 | 1 | equemene | TEMP1 = ALPHA*X(J) |
199 | 1 | equemene | TEMP2 = ZERO |
200 | 1 | equemene | DO 50 I = 1,J - 1 |
201 | 1 | equemene | Y(I) = Y(I) + TEMP1*A(I,J) |
202 | 1 | equemene | TEMP2 = TEMP2 + CONJG(A(I,J))*X(I) |
203 | 1 | equemene | 50 CONTINUE |
204 | 1 | equemene | Y(J) = Y(J) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2 |
205 | 1 | equemene | 60 CONTINUE |
206 | 1 | equemene | ELSE |
207 | 1 | equemene | JX = KX |
208 | 1 | equemene | JY = KY |
209 | 1 | equemene | DO 80 J = 1,N |
210 | 1 | equemene | TEMP1 = ALPHA*X(JX) |
211 | 1 | equemene | TEMP2 = ZERO |
212 | 1 | equemene | IX = KX |
213 | 1 | equemene | IY = KY |
214 | 1 | equemene | DO 70 I = 1,J - 1 |
215 | 1 | equemene | Y(IY) = Y(IY) + TEMP1*A(I,J) |
216 | 1 | equemene | TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX) |
217 | 1 | equemene | IX = IX + INCX |
218 | 1 | equemene | IY = IY + INCY |
219 | 1 | equemene | 70 CONTINUE |
220 | 1 | equemene | Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2 |
221 | 1 | equemene | JX = JX + INCX |
222 | 1 | equemene | JY = JY + INCY |
223 | 1 | equemene | 80 CONTINUE |
224 | 1 | equemene | END IF |
225 | 1 | equemene | ELSE |
226 | 1 | equemene | * |
227 | 1 | equemene | * Form y when A is stored in lower triangle. |
228 | 1 | equemene | * |
229 | 1 | equemene | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
230 | 1 | equemene | DO 100 J = 1,N |
231 | 1 | equemene | TEMP1 = ALPHA*X(J) |
232 | 1 | equemene | TEMP2 = ZERO |
233 | 1 | equemene | Y(J) = Y(J) + TEMP1*REAL(A(J,J)) |
234 | 1 | equemene | DO 90 I = J + 1,N |
235 | 1 | equemene | Y(I) = Y(I) + TEMP1*A(I,J) |
236 | 1 | equemene | TEMP2 = TEMP2 + CONJG(A(I,J))*X(I) |
237 | 1 | equemene | 90 CONTINUE |
238 | 1 | equemene | Y(J) = Y(J) + ALPHA*TEMP2 |
239 | 1 | equemene | 100 CONTINUE |
240 | 1 | equemene | ELSE |
241 | 1 | equemene | JX = KX |
242 | 1 | equemene | JY = KY |
243 | 1 | equemene | DO 120 J = 1,N |
244 | 1 | equemene | TEMP1 = ALPHA*X(JX) |
245 | 1 | equemene | TEMP2 = ZERO |
246 | 1 | equemene | Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) |
247 | 1 | equemene | IX = JX |
248 | 1 | equemene | IY = JY |
249 | 1 | equemene | DO 110 I = J + 1,N |
250 | 1 | equemene | IX = IX + INCX |
251 | 1 | equemene | IY = IY + INCY |
252 | 1 | equemene | Y(IY) = Y(IY) + TEMP1*A(I,J) |
253 | 1 | equemene | TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX) |
254 | 1 | equemene | 110 CONTINUE |
255 | 1 | equemene | Y(JY) = Y(JY) + ALPHA*TEMP2 |
256 | 1 | equemene | JX = JX + INCX |
257 | 1 | equemene | JY = JY + INCY |
258 | 1 | equemene | 120 CONTINUE |
259 | 1 | equemene | END IF |
260 | 1 | equemene | END IF |
261 | 1 | equemene | * |
262 | 1 | equemene | RETURN |
263 | 1 | equemene | * |
264 | 1 | equemene | * End of CHEMV . |
265 | 1 | equemene | * |
266 | 1 | equemene | END |