root / src / Step_DIIS.f90 @ 4
Historique | Voir | Annoter | Télécharger (10,33 ko)
1 | 1 | equemene | !C HEAT is never used, not even in call of Space(...) |
---|---|---|---|
2 | 1 | equemene | !C XPARAM = input parameter vector (Geometry). |
3 | 1 | equemene | !C Grad = input gradient vector. |
4 | 1 | equemene | SUBROUTINE Step_DIIS(XP,XPARAM,GP,GRAD,HP,HEAT,Hess,NVAR,FRST) |
5 | 4 | pfleura2 | !SUBROUTINE DIIS(XPARAM,STEP,GRAD,HP,HEAT,Hess,NVAR,FRST) |
6 | 1 | equemene | ! IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
7 | 1 | equemene | IMPLICIT NONE |
8 | 1 | equemene | integer, parameter :: KINT = kind(1) |
9 | 1 | equemene | integer, parameter :: KREAL = kind(1.0d0) |
10 | 1 | equemene | |
11 | 1 | equemene | ! INCLUDE 'SIZES' |
12 | 1 | equemene | |
13 | 1 | equemene | INTEGER(KINT) :: NVAR |
14 | 1 | equemene | REAL(KREAL) :: XP(NVAR), XPARAM(NVAR), GP(NVAR), GRAD(NVAR), Hess(NVAR*NVAR) |
15 | 4 | pfleura2 | !REAL(KREAL) :: Hess_inv(NVAR,NVAR),XPARAM_old(NVAR),STEP(NVAR) |
16 | 1 | equemene | REAL(KREAL) :: HEAT, HP |
17 | 1 | equemene | LOGICAL :: FRST |
18 | 4 | pfleura2 | |
19 | 1 | equemene | !************************************************************************ |
20 | 1 | equemene | !* * |
21 | 1 | equemene | !* DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE * |
22 | 1 | equemene | !* * |
23 | 1 | equemene | !* THIS INVOLVES SOLVING FOR C IN XPARAM(NEW) = XPARAM' - HG' * |
24 | 1 | equemene | !* * |
25 | 1 | equemene | !* WHERE XPARAM' = SUM(C(I)XPARAM(I), THE C COEFFICIENTES COMING FROM * |
26 | 1 | equemene | !* * |
27 | 1 | equemene | !* | B 1 | . | C | = | 0 | * |
28 | 1 | equemene | !* | 1 0 | |-L | | 1 | * |
29 | 1 | equemene | !* * |
30 | 1 | equemene | !* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J) GRAD(I) = GRADIENT ON CYCLE I * |
31 | 1 | equemene | !* Hess = INVERSE HESSIAN * |
32 | 1 | equemene | !* * |
33 | 1 | equemene | !* REFERENCE * |
34 | 1 | equemene | !* * |
35 | 1 | equemene | !* P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984) * |
36 | 1 | equemene | !* * |
37 | 1 | equemene | !************************************************************************ |
38 | 1 | equemene | !************************************************************************ |
39 | 1 | equemene | !* * |
40 | 1 | equemene | !* GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN * |
41 | 1 | equemene | !* THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER * |
42 | 1 | equemene | !* (A VARIABLE METRIC METHOD) * |
43 | 1 | equemene | !* * |
44 | 1 | equemene | !* WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA * |
45 | 1 | equemene | !* * |
46 | 1 | equemene | !* REFERENCE * |
47 | 1 | equemene | !* * |
48 | 1 | equemene | !* "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM * |
49 | 1 | equemene | !* GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL * |
50 | 1 | equemene | !* LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10, * |
51 | 1 | equemene | !* 939-950 (1989). * |
52 | 1 | equemene | !* * |
53 | 1 | equemene | !* MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS * |
54 | 1 | equemene | !* * |
55 | 1 | equemene | !************************************************************************ |
56 | 1 | equemene | |
57 | 1 | equemene | ! MRESET = number of iterations. |
58 | 1 | equemene | INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
59 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: XSET(:),GSET(:),ERR(:) ! MRESET*NVAR |
60 | 1 | equemene | REAL(KREAL) :: ESET(MRESET) |
61 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: DX(:),GSAVE(:) !NVAR |
62 | 1 | equemene | REAL(KREAL) :: B(M2),BS(M2),BST(M2) |
63 | 1 | equemene | LOGICAL DEBUG, PRINT |
64 | 1 | equemene | INTEGER(KINT), SAVE :: MSET |
65 | 1 | equemene | INTEGER(KINT) :: NDIIS, MPLUS, INV, ITERA, MM |
66 | 1 | equemene | INTEGER(KINT) :: I,J,K, JJ, KJ, JNV, II, IONE, IJ, INK,ITmp |
67 | 1 | equemene | REAL(KREAL) :: XMax, XNorm, S, DET, THRES |
68 | 1 | equemene | |
69 | 1 | equemene | DEBUG=.TRUE. |
70 | 1 | equemene | PRINT=.TRUE. |
71 | 1 | equemene | |
72 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' BEGIN GDIIS '')') |
73 | 4 | pfleura2 | |
74 | 4 | pfleura2 | !XPARAM_old = XPARAM |
75 | 4 | pfleura2 | |
76 | 1 | equemene | ! Initialization |
77 | 1 | equemene | IF (FRST) THEN |
78 | 1 | equemene | ! FRST will be set to False in Space, so no need to modify it here |
79 | 1 | equemene | IF (ALLOCATED(XSET)) THEN |
80 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS Dealloc '')') |
81 | 1 | equemene | DEALLOCATE(XSet,GSET,ERR,DX,GSave) |
82 | 1 | equemene | RETURN |
83 | 1 | equemene | ELSE |
84 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS alloc '')') |
85 | 1 | equemene | ALLOCATE(XSet(MRESET*NVAR), GSet(MRESET*NVAR), ERR(MRESET*NVAR)) |
86 | 1 | equemene | ALLOCATE(DX(NVAR),GSAVE(NVAR)) |
87 | 1 | equemene | END IF |
88 | 1 | equemene | END IF |
89 | 1 | equemene | !C |
90 | 1 | equemene | !C SPACE SIMPLY LOADS THE CURRENT VALUES OF XPARAM AND GRAD INTO |
91 | 1 | equemene | !C THE ARRAYS XSET AND GSET |
92 | 1 | equemene | !C |
93 | 1 | equemene | !C HEAT is never used, not even in Space(...) |
94 | 1 | equemene | CALL SPACE(MRESET,MSET,XPARAM,GRAD,HEAT,NVAR,XSET,GSET,ESET,FRST) |
95 | 1 | equemene | |
96 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' GDIIS after Space '')') |
97 | 1 | equemene | |
98 | 1 | equemene | ! INITIALIZE SOME VARIABLES AND CONSTANTS: |
99 | 1 | equemene | NDIIS = MSET |
100 | 1 | equemene | MPLUS = MSET + 1 |
101 | 1 | equemene | MM = MPLUS * MPLUS |
102 | 1 | equemene | |
103 | 1 | equemene | ! COMPUTE THE APPROXIMATE ERROR VECTORS: |
104 | 1 | equemene | INV=-NVAR |
105 | 1 | equemene | DO 30 I=1,MSET |
106 | 1 | equemene | INV = INV + NVAR |
107 | 1 | equemene | DO 30 J=1,NVAR |
108 | 1 | equemene | S = 0.D0 |
109 | 1 | equemene | KJ=(J*(J-1))/2 |
110 | 1 | equemene | DO 10 K=1,J |
111 | 1 | equemene | KJ = KJ+1 |
112 | 1 | equemene | 10 S = S - Hess(KJ) * GSET(INV+K) |
113 | 1 | equemene | DO 20 K=J+1,NVAR |
114 | 1 | equemene | KJ = (K*(K-1))/2+J |
115 | 1 | equemene | 20 S = S - Hess(KJ) * GSET(INV+K) |
116 | 1 | equemene | 30 ERR(INV+J) = S |
117 | 1 | equemene | |
118 | 1 | equemene | |
119 | 1 | equemene | |
120 | 1 | equemene | ! CONSTRUCT THE GDIIS MATRIX: |
121 | 1 | equemene | ! initialization (not really needed) |
122 | 1 | equemene | DO I=1,MM |
123 | 1 | equemene | B(I) = 1.D0 |
124 | 1 | equemene | END DO |
125 | 4 | pfleura2 | |
126 | 1 | equemene | ! B_ij calculations from <e_i|e_j> |
127 | 1 | equemene | JJ=0 |
128 | 1 | equemene | INV=-NVAR |
129 | 1 | equemene | DO 50 I=1,MSET |
130 | 1 | equemene | INV=INV+NVAR |
131 | 1 | equemene | JNV=-NVAR |
132 | 1 | equemene | DO 50 J=1,MSET |
133 | 1 | equemene | JNV=JNV+NVAR |
134 | 1 | equemene | JJ = JJ + 1 |
135 | 1 | equemene | B(JJ)=0.D0 |
136 | 1 | equemene | DO 50 K=1,NVAR |
137 | 1 | equemene | 50 B(JJ) = B(JJ) + ERR(INV+K) * ERR(JNV+K) |
138 | 1 | equemene | |
139 | 1 | equemene | ! The following shifting is required to correct indices of B_ij elements in the GDIIS matrix. |
140 | 4 | pfleura2 | ! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
141 | 1 | equemene | DO 60 I=MSET-1,1,-1 |
142 | 1 | equemene | DO 60 J=MSET,1,-1 |
143 | 1 | equemene | 60 B(I*MSET+J+I) = B(I*MSET+J) |
144 | 1 | equemene | |
145 | 1 | equemene | ! For last row and last column of GDIIS matrix |
146 | 1 | equemene | DO 70 I=1,MPLUS |
147 | 1 | equemene | B(MPLUS*I) = 1.D0 |
148 | 1 | equemene | 70 B(MPLUS*MSET+I) = 1.D0 |
149 | 1 | equemene | B(MM) = 0.D0 |
150 | 1 | equemene | |
151 | 1 | equemene | ! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
152 | 1 | equemene | 80 CONTINUE |
153 | 1 | equemene | DO 90 I=1,MM |
154 | 1 | equemene | 90 BS(I) = B(I) |
155 | 1 | equemene | IF (NDIIS .EQ. MSET) GO TO 140 |
156 | 1 | equemene | DO 130 II=1,MSET-NDIIS |
157 | 1 | equemene | XMAX = -1.D10 |
158 | 1 | equemene | ITERA = 0 |
159 | 1 | equemene | DO 110 I=1,MSET |
160 | 1 | equemene | XNORM = 0.D0 |
161 | 1 | equemene | INV = (I-1) * MPLUS |
162 | 1 | equemene | DO 100 J=1,MSET |
163 | 1 | equemene | 100 XNORM = XNORM + ABS(B(INV + J)) |
164 | 1 | equemene | IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
165 | 1 | equemene | XMAX = XNORM |
166 | 1 | equemene | ITERA = I |
167 | 1 | equemene | IONE = INV + I |
168 | 1 | equemene | ENDIF |
169 | 1 | equemene | 110 CONTINUE |
170 | 1 | equemene | DO 120 I=1,MPLUS |
171 | 1 | equemene | INV = (I-1) * MPLUS |
172 | 1 | equemene | DO 120 J=1,MPLUS |
173 | 1 | equemene | JNV = (J-1) * MPLUS |
174 | 1 | equemene | IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
175 | 1 | equemene | B(JNV + I) = B(INV + J) |
176 | 1 | equemene | 120 CONTINUE |
177 | 1 | equemene | B(IONE) = 1.0D0 |
178 | 1 | equemene | 130 CONTINUE |
179 | 1 | equemene | 140 CONTINUE |
180 | 1 | equemene | |
181 | 1 | equemene | IF (DEBUG) THEN |
182 | 1 | equemene | |
183 | 1 | equemene | ! OUTPUT THE GDIIS MATRIX: |
184 | 1 | equemene | WRITE(*,'(/5X,'' GDIIS MATRIX'')') |
185 | 1 | equemene | ITmp=min(12,MPLUS) |
186 | 1 | equemene | DO IJ=1,MPLUS |
187 | 1 | equemene | WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
188 | 1 | equemene | END DO |
189 | 1 | equemene | ENDIF |
190 | 1 | equemene | |
191 | 1 | equemene | ! SCALE DIIS MATRIX BEFORE INVERSION: |
192 | 1 | equemene | |
193 | 1 | equemene | DO I=1,MPLUS |
194 | 1 | equemene | II = MPLUS * (I-1) + I |
195 | 1 | equemene | GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
196 | 1 | equemene | END DO |
197 | 4 | pfleura2 | |
198 | 1 | equemene | GSAVE(MPLUS) = 1.D0 |
199 | 1 | equemene | DO I=1,MPLUS |
200 | 1 | equemene | DO J=1,MPLUS |
201 | 1 | equemene | IJ = MPLUS * (I-1) + J |
202 | 1 | equemene | B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
203 | 1 | equemene | END DO |
204 | 1 | equemene | END DO |
205 | 4 | pfleura2 | |
206 | 1 | equemene | IF (DEBUG) THEN |
207 | 1 | equemene | ! OUTPUT SCALED GDIIS MATRIX: |
208 | 1 | equemene | WRITE(*,'(/5X,'' GDIIS MATRIX (SCALED)'')') |
209 | 1 | equemene | ITmp=min(12,MPLUS) |
210 | 1 | equemene | DO IJ=1,MPLUS |
211 | 1 | equemene | WRITE(*,'(12(F10.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
212 | 1 | equemene | END DO |
213 | 1 | equemene | |
214 | 1 | equemene | ENDIF ! matches IF (DEBUG) THEN |
215 | 1 | equemene | |
216 | 1 | equemene | ! INVERT THE GDIIS MATRIX B: |
217 | 1 | equemene | CALL MINV(B,MPLUS,DET) ! matrix inversion. |
218 | 1 | equemene | |
219 | 1 | equemene | DO I=1,MPLUS |
220 | 1 | equemene | DO J=1,MPLUS |
221 | 1 | equemene | IJ = MPLUS * (I-1) + J |
222 | 1 | equemene | B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
223 | 1 | equemene | END DO |
224 | 1 | equemene | END DO |
225 | 1 | equemene | |
226 | 1 | equemene | ! COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT VECTORS: |
227 | 1 | equemene | DO K=1,NVAR |
228 | 1 | equemene | XP(K) = 0.D0 |
229 | 1 | equemene | GP(K) = 0.D0 |
230 | 1 | equemene | DO I=1,MSET |
231 | 1 | equemene | INK = (I-1) * NVAR + K |
232 | 4 | pfleura2 | !Print *, 'B(',MPLUS*MSET+I,')=', B(MPLUS*MSET+I) |
233 | 1 | equemene | XP(K) = XP(K) + B(MPLUS*MSET+I) * XSET(INK) |
234 | 1 | equemene | GP(K) = GP(K) + B(MPLUS*MSET+I) * GSET(INK) |
235 | 1 | equemene | END DO |
236 | 4 | pfleura2 | END DO |
237 | 4 | pfleura2 | |
238 | 1 | equemene | HP=0.D0 |
239 | 1 | equemene | DO I=1,MSET |
240 | 1 | equemene | HP=HP+B(MPLUS*MSET+I)*ESET(I) |
241 | 1 | equemene | END DO |
242 | 4 | pfleura2 | |
243 | 1 | equemene | DO K=1,NVAR |
244 | 1 | equemene | DX(K) = XPARAM(K) - XP(K) |
245 | 1 | equemene | END DO |
246 | 1 | equemene | XNORM = SQRT(DOT_PRODUCT(DX,DX)) |
247 | 1 | equemene | IF (PRINT) THEN |
248 | 1 | equemene | WRITE (6,'(/10X,''DEVIATION IN X '',F7.4,8X,''DETERMINANT '',G9.3)') XNORM,DET |
249 | 1 | equemene | WRITE(*,'(10X,''GDIIS COEFFICIENTS'')') |
250 | 1 | equemene | WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET) |
251 | 1 | equemene | ENDIF |
252 | 1 | equemene | |
253 | 1 | equemene | ! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
254 | 1 | equemene | THRES = MAX(10.D0**(-NVAR), 1.D-25) |
255 | 1 | equemene | IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
256 | 1 | equemene | IF (PRINT)THEN |
257 | 1 | equemene | WRITE(*,*) "THE DIIS MATRIX IS ILL CONDITIONED" |
258 | 1 | equemene | WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
259 | 1 | equemene | WRITE(*,*) "THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
260 | 1 | equemene | END IF |
261 | 1 | equemene | DO K=1,MM |
262 | 4 | pfleura2 | B(K) = BS(K) |
263 | 1 | equemene | END DO |
264 | 1 | equemene | NDIIS = NDIIS - 1 |
265 | 1 | equemene | IF (NDIIS .GT. 0) GO TO 80 |
266 | 1 | equemene | IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
267 | 1 | equemene | DO K=1,NVAR |
268 | 1 | equemene | XP(K) = XPARAM(K) |
269 | 1 | equemene | GP(K) = GRAD(K) |
270 | 1 | equemene | END DO |
271 | 1 | equemene | ENDIF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
272 | 4 | pfleura2 | |
273 | 1 | equemene | ! q_{m+1} = q'_{m+1} - H^{-1}g'_{m+1} |
274 | 4 | pfleura2 | ! Hess is a symmetric matrix. |
275 | 4 | pfleura2 | !Hess_inv = 1.d0 ! to be deleted. |
276 | 4 | pfleura2 | !Call GenInv(NVAR,Reshape(Hess,(/NVAR,NVAR/)),Hess_inv,NVAR) ! Implemented in Mat_util.f90 |
277 | 4 | pfleura2 | ! H^{-1}g'_{m+1} |
278 | 4 | pfleura2 | !Print *, 'Hess_inv=' |
279 | 4 | pfleura2 | !Print *, Hess_inv |
280 | 4 | pfleura2 | !XPARAM=0.d0 |
281 | 4 | pfleura2 | !DO I=1, NVAR |
282 | 4 | pfleura2 | !XPARAM(:) = XPARAM(:) + Hess_inv(:,I)*GP(I) |
283 | 4 | pfleura2 | !END DO |
284 | 4 | pfleura2 | !XPARAM(:) = XP(:) - XPARAM(:) ! now XPARAM is a new geometry. |
285 | 4 | pfleura2 | |
286 | 4 | pfleura2 | !STEP is the difference between the new and old geometry and thus "step": |
287 | 1 | equemene | !STEP = XPARAM - XPARAM_old |
288 | 1 | equemene | |
289 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' END GDIIS '',/)') |
290 | 1 | equemene | |
291 | 1 | equemene | END SUBROUTINE Step_DIIS |