root / src / Splin1D.f90 @ 4
Historique | Voir | Annoter | Télécharger (10,92 ko)
1 | 1 | equemene | SUBROUTINE spline(x,y,n,yp1,ypn,y2) |
---|---|---|---|
2 | 1 | equemene | !Given arrays x(1:n) and y(1:n) containing a tabulated function, |
3 | 1 | equemene | ! i.e., y i = f(xi), with x1<x2< :::<xN , and given values yp1 and ypn |
4 | 1 | equemene | !for the rst derivative of the inter- polating function at points 1 and n, |
5 | 1 | equemene | ! respectively, this routine returns an array y2(1:n) of length n |
6 | 1 | equemene | !which contains the second derivatives of the interpolating function |
7 | 1 | equemene | !at the tabulated points xi. |
8 | 1 | equemene | ! Ifyp1 and/or ypn are equal to 1*10^30 or larger, |
9 | 1 | equemene | ! the routine is signaled to set the corresponding boundary |
10 | 1 | equemene | !condition for a natural spline, |
11 | 1 | equemene | !with zero second derivative on that boundary. |
12 | 1 | equemene | |
13 | 1 | equemene | Use Vartypes |
14 | 1 | equemene | |
15 | 1 | equemene | IMPLICIT NONE |
16 | 1 | equemene | |
17 | 1 | equemene | ! Number of points |
18 | 1 | equemene | INTEGER(KINT) :: n |
19 | 1 | equemene | ! Coordinate to spline |
20 | 1 | equemene | REAL(KREAL) :: x(n),y(n) |
21 | 1 | equemene | ! Coefficients to compute |
22 | 1 | equemene | REAL(KREAL) :: y2(n) |
23 | 1 | equemene | ! End-points derivatives |
24 | 1 | equemene | REAL(KREAL) ::yp1,ypn |
25 | 1 | equemene | |
26 | 1 | equemene | INTEGER(KINT), PARAMETER :: NMAX=500 |
27 | 1 | equemene | |
28 | 1 | equemene | INTEGER(KINT) :: i,k |
29 | 1 | equemene | REAL(KREAL) :: p,qn,sig,un,u(NMAX) |
30 | 1 | equemene | LOGICAL Debug |
31 | 1 | equemene | |
32 | 1 | equemene | INTERFACE |
33 | 1 | equemene | function valid(string) result (isValid) |
34 | 1 | equemene | CHARACTER(*), intent(in) :: string |
35 | 1 | equemene | logical :: isValid |
36 | 1 | equemene | END function VALID |
37 | 1 | equemene | |
38 | 1 | equemene | END INTERFACE |
39 | 1 | equemene | |
40 | 1 | equemene | Debug=valid("spline") |
41 | 1 | equemene | |
42 | 1 | equemene | IF (DEBUG) THEN |
43 | 1 | equemene | WRITE(*,*) "Spline 1D",n |
44 | 1 | equemene | WRITE(*,*) "x:",(x(i),i=1,n) |
45 | 1 | equemene | WRITE(*,*) "y:",(y(i),i=1,n) |
46 | 1 | equemene | END IF |
47 | 1 | equemene | |
48 | 1 | equemene | if (yp1.gt..99e30) then |
49 | 1 | equemene | ! The lower boundary condition is set either to be \natural" |
50 | 1 | equemene | y2(1)=0. |
51 | 1 | equemene | u(1)=0. |
52 | 1 | equemene | else |
53 | 1 | equemene | ! or else to have a speci ed rst derivative. |
54 | 1 | equemene | y2(1)=-0.5 |
55 | 1 | equemene | u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1) |
56 | 1 | equemene | endif |
57 | 1 | equemene | do i=2,n-1 |
58 | 1 | equemene | ! This is the decomposition loop of the tridiagonal algorithm. |
59 | 1 | equemene | !y2 and u are used for temporary storage of the decomposed factors. |
60 | 1 | equemene | sig=(x(i)-x(i-1))/(x(i+1)-x(i-1)) |
61 | 1 | equemene | p=sig*y2(i-1)+2. |
62 | 1 | equemene | y2(i)=(sig-1.)/p |
63 | 1 | equemene | u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1)) & |
64 | 1 | equemene | /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p |
65 | 1 | equemene | enddo |
66 | 1 | equemene | if (ypn.gt..99e30) then |
67 | 1 | equemene | !The upper boundary condition is set either to be \natural" |
68 | 1 | equemene | qn=0. |
69 | 1 | equemene | un=0. |
70 | 1 | equemene | else |
71 | 1 | equemene | !or else to have a speci ed rst derivative. |
72 | 1 | equemene | qn=0.5 |
73 | 1 | equemene | un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) |
74 | 1 | equemene | endif |
75 | 1 | equemene | y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.) |
76 | 1 | equemene | do k=n-1,1,-1 |
77 | 1 | equemene | y2(k)=y2(k)*y2(k+1)+u(k) |
78 | 1 | equemene | enddo |
79 | 1 | equemene | |
80 | 1 | equemene | IF (DEBUG) WRITE(*,*) "y2:",(y2(i),i=1,n) |
81 | 1 | equemene | return |
82 | 1 | equemene | END |
83 | 1 | equemene | |
84 | 1 | equemene | |
85 | 1 | equemene | SUBROUTINE splint(x,y,N,xa,ya,y2a) |
86 | 1 | equemene | |
87 | 1 | equemene | Use Vartypes |
88 | 1 | equemene | |
89 | 1 | equemene | IMPLICIT NONE |
90 | 1 | equemene | |
91 | 1 | equemene | ! Number of points |
92 | 1 | equemene | INTEGER(KINT) :: n |
93 | 1 | equemene | ! Spline coefficients |
94 | 1 | equemene | REAL(KREAL) :: xa(n),ya(n), y2a(n) |
95 | 1 | equemene | ! Y to compute for a given x |
96 | 1 | equemene | REAL(KREAL) :: x,y |
97 | 1 | equemene | |
98 | 1 | equemene | |
99 | 1 | equemene | INTEGER(KINT) :: ind |
100 | 1 | equemene | LOGICAL debug |
101 | 1 | equemene | |
102 | 1 | equemene | ! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a |
103 | 1 | equemene | ! function (with the xai's in order), and given the array y2a(1:n), |
104 | 1 | equemene | !which is the output from spline above, and given a value of x, |
105 | 1 | equemene | ! this routine returns a cubic-spline interpolated value y. |
106 | 1 | equemene | INTEGER(KINT) :: k,khi,klo |
107 | 1 | equemene | REAL(KREAL) :: a,b,h |
108 | 1 | equemene | |
109 | 1 | equemene | |
110 | 1 | equemene | INTERFACE |
111 | 1 | equemene | function valid(string) result (isValid) |
112 | 1 | equemene | CHARACTER(*), intent(in) :: string |
113 | 1 | equemene | logical :: isValid |
114 | 1 | equemene | END function VALID |
115 | 1 | equemene | |
116 | 1 | equemene | END INTERFACE |
117 | 1 | equemene | |
118 | 1 | equemene | Debug=valid("splint") |
119 | 1 | equemene | |
120 | 1 | equemene | |
121 | 1 | equemene | ! if (debug) THEN |
122 | 1 | equemene | ! WRITE(*,*) "Splint 1D",n |
123 | 1 | equemene | ! WRITE(*,*) "xa:",(xa(i),i=1,n) |
124 | 1 | equemene | ! WRITE(*,*) "ya:",(ya(i),i=1,n) |
125 | 1 | equemene | ! WRITE(*,*) "y2a:",(y2a(i),i=1,n) |
126 | 1 | equemene | ! END IF |
127 | 1 | equemene | |
128 | 1 | equemene | |
129 | 1 | equemene | |
130 | 1 | equemene | klo=1 |
131 | 1 | equemene | !We will find the right place in the table by means of bisection. |
132 | 1 | equemene | ! This is optimal if sequential calls to this routine are at |
133 | 1 | equemene | !random values of x. If sequential calls are in order, and closely |
134 | 1 | equemene | ! spaced, one would do better to store previous values of klo and khi |
135 | 1 | equemene | ! and test if they remain appropriate on the next call. |
136 | 1 | equemene | khi=n |
137 | 1 | equemene | ! WRITE(*,*) xa(klo),xa(khi),n,x |
138 | 1 | equemene | 1 if (khi-klo.gt.1) then |
139 | 1 | equemene | k=(khi+klo)/2 |
140 | 1 | equemene | if(xa(k).gt.x) then |
141 | 1 | equemene | khi=k |
142 | 1 | equemene | else |
143 | 1 | equemene | klo=k |
144 | 1 | equemene | endif |
145 | 1 | equemene | goto 1 |
146 | 1 | equemene | endif |
147 | 1 | equemene | ! klo and khi now bracket the input value of x. |
148 | 1 | equemene | h=xa(khi)-xa(klo) |
149 | 1 | equemene | ! The xa's must be distinct. |
150 | 1 | equemene | if (h.eq.0.) pause 'bad xa input in splint' |
151 | 1 | equemene | ! Cubic spline polynomial is now evaluated. |
152 | 1 | equemene | a=(xa(khi)-x)/h |
153 | 1 | equemene | b=(x-xa(klo))/h |
154 | 1 | equemene | y=a*ya(klo)+b*ya(khi)+ ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi)) & |
155 | 1 | equemene | *(h**2)/6. |
156 | 1 | equemene | |
157 | 1 | equemene | ! WRITE(*,*) "Splint1D x,y",x,y |
158 | 1 | equemene | return |
159 | 1 | equemene | END |
160 | 1 | equemene | |
161 | 1 | equemene | |
162 | 1 | equemene | ! SUBROUTINE splinder ************************************************* |
163 | 1 | equemene | ! ********************************************************************* |
164 | 1 | equemene | |
165 | 1 | equemene | SUBROUTINE splinder(x,y,N,xa,ya,y2a) |
166 | 1 | equemene | Use Vartypes |
167 | 1 | equemene | |
168 | 1 | equemene | IMPLICIT NONE |
169 | 1 | equemene | |
170 | 1 | equemene | ! Number of points |
171 | 1 | equemene | INTEGER(KINT) :: n |
172 | 1 | equemene | ! Spline coefficients |
173 | 1 | equemene | REAL(KREAL) :: xa(n),ya(n), y2a(n) |
174 | 1 | equemene | ! Y to compute for a given x |
175 | 1 | equemene | REAL(KREAL) :: x,y |
176 | 1 | equemene | |
177 | 1 | equemene | |
178 | 1 | equemene | INTEGER(KINT) :: ind |
179 | 1 | equemene | LOGICAL debug |
180 | 1 | equemene | |
181 | 1 | equemene | ! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a |
182 | 1 | equemene | ! function (with the xai's in order), and given the array y2a(1:n), |
183 | 1 | equemene | ! which is the output from spline above, and given a value of x, |
184 | 1 | equemene | ! this routine returns a cubic-spline interpolated value y first DERIVATIVE. |
185 | 1 | equemene | ! this routine returns a cubic-spline interpolated value y. |
186 | 1 | equemene | INTEGER(KINT) :: k,khi,klo |
187 | 1 | equemene | REAL(KREAL) :: a,b,h |
188 | 1 | equemene | |
189 | 1 | equemene | |
190 | 1 | equemene | INTERFACE |
191 | 1 | equemene | function valid(string) result (isValid) |
192 | 1 | equemene | CHARACTER(*), intent(in) :: string |
193 | 1 | equemene | logical :: isValid |
194 | 1 | equemene | END function VALID |
195 | 1 | equemene | |
196 | 1 | equemene | END INTERFACE |
197 | 1 | equemene | |
198 | 1 | equemene | |
199 | 1 | equemene | Debug=valid("splinder") |
200 | 1 | equemene | |
201 | 1 | equemene | |
202 | 1 | equemene | |
203 | 1 | equemene | klo=1 |
204 | 1 | equemene | ! We will find the right place in the table by means of bisection. |
205 | 1 | equemene | ! This is optimal if sequential calls to this routine are at |
206 | 1 | equemene | !random values of x. If sequential calls are in order, and closely |
207 | 1 | equemene | ! spaced, one would do better to store previous values of klo and khi |
208 | 1 | equemene | ! and test if they remain appropriate on the next call. |
209 | 1 | equemene | khi=n |
210 | 1 | equemene | ! WRITE(*,*) xa(klo),xa(khi),n,x |
211 | 1 | equemene | 1 if (khi-klo.gt.1) then |
212 | 1 | equemene | k=(khi+klo)/2 |
213 | 1 | equemene | if(xa(k).gt.x) then |
214 | 1 | equemene | khi=k |
215 | 1 | equemene | else |
216 | 1 | equemene | klo=k |
217 | 1 | equemene | endif |
218 | 1 | equemene | goto 1 |
219 | 1 | equemene | endif |
220 | 1 | equemene | ! klo and khi now bracket the input value of x. |
221 | 1 | equemene | h=xa(khi)-xa(klo) |
222 | 1 | equemene | ! The xa's must be distinct. |
223 | 1 | equemene | if (h.eq.0.) pause 'bad xa input in splint' |
224 | 1 | equemene | ! Cubic spline polynomial is now evaluated. |
225 | 1 | equemene | a=(xa(khi)-x)/h |
226 | 1 | equemene | b=(x-xa(klo))/h |
227 | 1 | equemene | ! Formula taken from the Numerical Recipies book. |
228 | 1 | equemene | y=(ya(khi)-ya(klo))/h - (3*a**2-1)/6.*h*y2a(klo)+ & |
229 | 1 | equemene | (3*b**2-1)/6.*h*y2a(khi) |
230 | 1 | equemene | return |
231 | 1 | equemene | END |
232 | 1 | equemene | |
233 | 1 | equemene | |
234 | 1 | equemene | |
235 | 1 | equemene | ! SUBROUTINE splintder ************************************************* |
236 | 1 | equemene | ! ********************************************************************* |
237 | 1 | equemene | |
238 | 1 | equemene | SUBROUTINE splintDer(x,y,der,N,xa,ya,y2a) |
239 | 1 | equemene | |
240 | 1 | equemene | ! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a |
241 | 1 | equemene | ! function (with the xai's in order), and given the array y2a(1:n), |
242 | 1 | equemene | ! which is the output from spline above, and given a value of x, |
243 | 1 | equemene | ! this routine returns a cubic-spline interpolated value y. |
244 | 1 | equemene | ! and the derivative der. |
245 | 1 | equemene | |
246 | 1 | equemene | Use Vartypes |
247 | 1 | equemene | |
248 | 1 | equemene | IMPLICIT NONE |
249 | 1 | equemene | |
250 | 1 | equemene | ! Number of points |
251 | 1 | equemene | INTEGER(KINT) :: n |
252 | 1 | equemene | ! Spline coefficients |
253 | 1 | equemene | REAL(KREAL) :: xa(n),ya(n), y2a(n) |
254 | 1 | equemene | ! Y to compute for a given x |
255 | 1 | equemene | REAL(KREAL) :: x,y, der |
256 | 1 | equemene | |
257 | 1 | equemene | |
258 | 1 | equemene | INTEGER(KINT) :: ind |
259 | 1 | equemene | LOGICAL debug |
260 | 1 | equemene | |
261 | 1 | equemene | INTEGER(KINT) :: k,khi,klo |
262 | 1 | equemene | REAL(KREAL) :: a,b,h |
263 | 1 | equemene | |
264 | 1 | equemene | INTERFACE |
265 | 1 | equemene | function valid(string) result (isValid) |
266 | 1 | equemene | CHARACTER(*), intent(in) :: string |
267 | 1 | equemene | logical :: isValid |
268 | 1 | equemene | END function VALID |
269 | 1 | equemene | |
270 | 1 | equemene | END INTERFACE |
271 | 1 | equemene | |
272 | 1 | equemene | Debug=valid("splintder") |
273 | 1 | equemene | |
274 | 1 | equemene | |
275 | 1 | equemene | ! if (debug) THEN |
276 | 1 | equemene | ! WRITE(*,*) "SplintDer 1D",n |
277 | 1 | equemene | ! WRITE(*,*) "xa:",(xa(i),i=1,n) |
278 | 1 | equemene | ! WRITE(*,*) "ya:",(ya(i),i=1,n) |
279 | 1 | equemene | ! WRITE(*,*) "y2a:",(y2a(i),i=1,n) |
280 | 1 | equemene | ! END IF |
281 | 1 | equemene | |
282 | 1 | equemene | |
283 | 1 | equemene | |
284 | 1 | equemene | klo=1 |
285 | 1 | equemene | ! We will find the right place in the table by means of bisection. |
286 | 1 | equemene | ! This is optimal if sequential calls to this routine are at |
287 | 1 | equemene | ! random values of x. If sequential calls are in order, and closely |
288 | 1 | equemene | ! spaced, one would do better to store previous values of klo and khi |
289 | 1 | equemene | ! and test if they remain appropriate on the next call. |
290 | 1 | equemene | khi=n |
291 | 1 | equemene | ! WRITE(*,*) xa(klo),xa(khi),n,x |
292 | 1 | equemene | 1 if (khi-klo.gt.1) then |
293 | 1 | equemene | k=(khi+klo)/2 |
294 | 1 | equemene | if(xa(k).gt.x) then |
295 | 1 | equemene | khi=k |
296 | 1 | equemene | else |
297 | 1 | equemene | klo=k |
298 | 1 | equemene | endif |
299 | 1 | equemene | goto 1 |
300 | 1 | equemene | endif |
301 | 1 | equemene | ! klo and khi now bracket the input value of x. |
302 | 1 | equemene | h=xa(khi)-xa(klo) |
303 | 1 | equemene | ! The xa's must be distinct. |
304 | 1 | equemene | if (h.eq.0.) pause 'bad xa input in splint' |
305 | 1 | equemene | ! Cubic spline polynomial is now evaluated. |
306 | 1 | equemene | a=(xa(khi)-x)/h |
307 | 1 | equemene | b=(x-xa(klo))/h |
308 | 1 | equemene | y=a*ya(klo)+b*ya(khi)+ ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi)) & |
309 | 1 | equemene | *(h**2)/6. |
310 | 1 | equemene | ! Formula taken from the Numerical Recipies book. |
311 | 1 | equemene | der=(ya(khi)-ya(klo))/h - (3*a**2-1)/6.*h*y2a(klo)+ & |
312 | 1 | equemene | (3*b**2-1)/6.*h*y2a(khi) |
313 | 1 | equemene | return |
314 | 1 | equemene | END SUBROUTINE splintDer |
315 | 1 | equemene | |
316 | 1 | equemene | |
317 | 1 | equemene | |
318 | 1 | equemene | SUBROUTINE LinearInt(x,y,der,N,xa,ya) |
319 | 1 | equemene | |
320 | 1 | equemene | ! Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a |
321 | 1 | equemene | ! function (with the xai's in order), and given the array y2a(1:n), |
322 | 1 | equemene | ! which is the output from spline above, and given a value of x, |
323 | 1 | equemene | ! this routine returns a cubic-spline interpolated value y. |
324 | 1 | equemene | |
325 | 1 | equemene | Use Vartypes |
326 | 1 | equemene | |
327 | 1 | equemene | IMPLICIT NONE |
328 | 1 | equemene | |
329 | 1 | equemene | ! Number of points |
330 | 1 | equemene | INTEGER(KINT) :: n |
331 | 1 | equemene | ! Spline coefficients |
332 | 1 | equemene | REAL(KREAL) :: xa(n),ya(n) |
333 | 1 | equemene | ! Y to compute for a given x |
334 | 1 | equemene | REAL(KREAL) :: x,y, der |
335 | 1 | equemene | |
336 | 1 | equemene | |
337 | 1 | equemene | INTEGER(KINT) :: ind |
338 | 1 | equemene | LOGICAL debug |
339 | 1 | equemene | |
340 | 1 | equemene | INTEGER(KINT) :: k,khi,klo |
341 | 1 | equemene | REAL(KREAL) :: a,b,h |
342 | 1 | equemene | |
343 | 1 | equemene | INTERFACE |
344 | 1 | equemene | function valid(string) result (isValid) |
345 | 1 | equemene | CHARACTER(*), intent(in) :: string |
346 | 1 | equemene | logical :: isValid |
347 | 1 | equemene | END function VALID |
348 | 1 | equemene | |
349 | 1 | equemene | END INTERFACE |
350 | 1 | equemene | |
351 | 1 | equemene | Debug=valid("linearint") |
352 | 1 | equemene | |
353 | 1 | equemene | |
354 | 1 | equemene | ! if (debug) THEN |
355 | 1 | equemene | ! WRITE(*,*) "SplintDer 1D",n |
356 | 1 | equemene | ! WRITE(*,*) "xa:",(xa(i),i=1,n) |
357 | 1 | equemene | ! WRITE(*,*) "ya:",(ya(i),i=1,n) |
358 | 1 | equemene | ! WRITE(*,*) "y2a:",(y2a(i),i=1,n) |
359 | 1 | equemene | ! END IF |
360 | 1 | equemene | |
361 | 1 | equemene | |
362 | 1 | equemene | |
363 | 1 | equemene | klo=1 |
364 | 1 | equemene | ! We will find the right place in the table by means of bisection. |
365 | 1 | equemene | ! This is optimal if sequential calls to this routine are at |
366 | 1 | equemene | ! random values of x. If sequential calls are in order, and closely |
367 | 1 | equemene | ! spaced, one would do better to store previous values of klo and khi |
368 | 1 | equemene | ! and test if they remain appropriate on the next call. |
369 | 1 | equemene | khi=n |
370 | 1 | equemene | ! WRITE(*,*) xa(klo),xa(khi),n,x |
371 | 1 | equemene | 1 if (khi-klo.gt.1) then |
372 | 1 | equemene | k=(khi+klo)/2 |
373 | 1 | equemene | if(xa(k).gt.x) then |
374 | 1 | equemene | khi=k |
375 | 1 | equemene | else |
376 | 1 | equemene | klo=k |
377 | 1 | equemene | endif |
378 | 1 | equemene | goto 1 |
379 | 1 | equemene | endif |
380 | 1 | equemene | ! klo and khi now bracket the input value of x. |
381 | 1 | equemene | h=xa(khi)-xa(klo) |
382 | 1 | equemene | ! The xa's must be distinct. |
383 | 1 | equemene | if (h.eq.0.) pause 'bad xa input in splint' |
384 | 1 | equemene | ! Linear int now evaluated. |
385 | 1 | equemene | a=(xa(khi)-x)/h |
386 | 1 | equemene | b=(x-xa(klo))/h |
387 | 1 | equemene | y=a*ya(klo)+b*ya(khi) |
388 | 1 | equemene | ! Formula taken from the Numerical Recipies book. |
389 | 1 | equemene | der=a+b |
390 | 1 | equemene | return |
391 | 1 | equemene | END SUBROUTINE LinearInt |