root / src / Mat_util.f90 @ 4
Historique | Voir | Annoter | Télécharger (8,25 ko)
1 | 1 | equemene | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|---|---|---|
2 | 1 | equemene | ! |
3 | 1 | equemene | SUBROUTINE GenInv(N,A,InvA,NReal) |
4 | 1 | equemene | !!!!!!!!!!!!!!!! |
5 | 1 | equemene | ! |
6 | 1 | equemene | ! This subroutines calculates the generalized inverse of a matrix |
7 | 1 | equemene | ! It first diagonalize the matrix A, then inverse all non-zero |
8 | 1 | equemene | ! eigenvalues, and forms the InvA matrix using these new eigenvalues |
9 | 1 | equemene | ! |
10 | 1 | equemene | ! Input: |
11 | 1 | equemene | ! N : dimension of A |
12 | 1 | equemene | ! NReal :Actual dimension of A |
13 | 1 | equemene | ! A(N,N) : Initial Matrix, stored in A(Nreal,Nreal) |
14 | 1 | equemene | ! |
15 | 1 | equemene | ! Output: |
16 | 1 | equemene | ! InvA(N,N) : Inversed Matrix, stored in a (Nreal,NReal) matrix |
17 | 1 | equemene | ! |
18 | 1 | equemene | !!!!!!!!!!!!!!!!!!!!!!! |
19 | 1 | equemene | |
20 | 1 | equemene | Use Vartypes |
21 | 1 | equemene | IMPLICIT NONE |
22 | 1 | equemene | |
23 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: N,Nreal |
24 | 1 | equemene | REAL(KREAL), INTENT(IN) :: A(NReal,NReal) |
25 | 1 | equemene | REAL(KREAL), INTENT(OUT) :: InvA(NReal,NReal) |
26 | 1 | equemene | ! |
27 | 1 | equemene | |
28 | 1 | equemene | INTEGER(KINT) :: I,J,K |
29 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: EigVec(:,:) ! (Nreal,Nreal) |
30 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: EigVal(:) ! (Nreal) |
31 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: ATmp(:,:) ! (NReal,Nreal) |
32 | 1 | equemene | REAL(KREAL) :: ss |
33 | 1 | equemene | ! |
34 | 1 | equemene | REAL(KREAL), PARAMETER :: eps=1e-12 |
35 | 1 | equemene | |
36 | 1 | equemene | ALLOCATE(EigVec(Nreal,Nreal), EigVal(Nreal),ATmp(NReal,NReal)) |
37 | 1 | equemene | ! A will be destroyed in Jacobi so we save it |
38 | 1 | equemene | ATmp=A |
39 | 1 | equemene | CALL JAcobi(ATmp,N,EigVal,EigVec,NReal) |
40 | 1 | equemene | |
41 | 1 | equemene | DO I=1,N |
42 | 1 | equemene | IF (abs(EigVal(I)).GT.eps) EigVal(I)=1.d0/EigVal(I) |
43 | 1 | equemene | END DO |
44 | 1 | equemene | |
45 | 1 | equemene | InvA=0.d0 |
46 | 1 | equemene | do k = 1, n |
47 | 1 | equemene | do j = 1, n |
48 | 1 | equemene | ss = eigval(k) * eigvec(j,k) |
49 | 1 | equemene | do i = 1, j |
50 | 1 | equemene | InvA(i,j) = InvA(i,j) + ss * eigvec(i,k) |
51 | 1 | equemene | end do |
52 | 1 | equemene | end do |
53 | 1 | equemene | end do |
54 | 1 | equemene | do j = 1, n |
55 | 1 | equemene | do i = 1, j-1 |
56 | 1 | equemene | InvA(j,i) = InvA(i,j) |
57 | 1 | equemene | end do |
58 | 1 | equemene | end do |
59 | 1 | equemene | |
60 | 1 | equemene | |
61 | 1 | equemene | DEALLOCATE(EigVec, EigVal,ATmp) |
62 | 1 | equemene | END SUBROUTINE GenInv |
63 | 1 | equemene | |
64 | 1 | equemene | !============================================================ |
65 | 1 | equemene | ! |
66 | 1 | equemene | ! ++ Matrix diagonalization Using jacobi |
67 | 1 | equemene | ! Works only for symmetric matrices |
68 | 1 | equemene | ! EigvenVectors : V(i,i) |
69 | 1 | equemene | ! Eigenvalues : D(i) |
70 | 1 | equemene | ! PFL 30/05/03 |
71 | 1 | equemene | ! This versioin uses packed matrices. |
72 | 1 | equemene | ! it unpacks them before calling Jacobi ! |
73 | 1 | equemene | ! we have AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; |
74 | 1 | equemene | ! |
75 | 1 | equemene | !============================================================ |
76 | 1 | equemene | ! |
77 | 1 | equemene | SUBROUTINE JacPacked(N,AP,D,V,nreal) |
78 | 1 | equemene | |
79 | 1 | equemene | Use Vartypes |
80 | 1 | equemene | IMPLICIT NONE |
81 | 1 | equemene | |
82 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: N,NREAL |
83 | 1 | equemene | INTEGER(KINT), PARAMETER :: Max_it=500 |
84 | 1 | equemene | REAL(KREAL) :: AP(N*(N+1)/2) |
85 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: A(:,:) |
86 | 1 | equemene | REAL(KREAL) :: V(Nreal,Nreal),D(Nreal) |
87 | 1 | equemene | INTEGER(KINT) :: i,j,nn |
88 | 1 | equemene | |
89 | 1 | equemene | allocate(A(nreal,nreal)) |
90 | 1 | equemene | nn=n*(n+1)/2 |
91 | 1 | equemene | ! WRITE(*,*) 'Jacpa 0' |
92 | 1 | equemene | ! WRITE(*,'(I3,10(1X,F15.6))') n,(AP(i),i=1,min(nn,5)) |
93 | 1 | equemene | ! WRITE(*,*) 'Jacpa 0' |
94 | 1 | equemene | do j=1,n |
95 | 1 | equemene | do i=1,j |
96 | 1 | equemene | ! WRITE(*,*) i,j |
97 | 1 | equemene | A(i,J)=AP(i + (j-1)*j/2) |
98 | 1 | equemene | A(j,I)=A(i,J) |
99 | 1 | equemene | end do |
100 | 1 | equemene | end do |
101 | 1 | equemene | ! do j=1,n |
102 | 1 | equemene | ! WRITE(*,'(10(1X,F15.6))') (A(i,J),i=1,min(n,5)) |
103 | 1 | equemene | ! end do |
104 | 1 | equemene | |
105 | 1 | equemene | ! WRITE(*,*) 'Jacpa 1' |
106 | 1 | equemene | call Jacobi(A,n,D,V,Nreal) |
107 | 1 | equemene | ! WRITE(*,*) 'Jacpa 2' |
108 | 1 | equemene | ! DO i=1,n |
109 | 1 | equemene | ! WRITE(*,'(1X,I3,10(1X,F15.6))') i,D(i),(V(j,i),j=1,min(n,5)) |
110 | 1 | equemene | ! end do |
111 | 1 | equemene | deallocate(a) |
112 | 1 | equemene | |
113 | 1 | equemene | end SUBROUTINE JacPacked |
114 | 1 | equemene | |
115 | 1 | equemene | |
116 | 1 | equemene | |
117 | 1 | equemene | ! |
118 | 1 | equemene | !============================================================ |
119 | 1 | equemene | ! |
120 | 1 | equemene | ! ++ Matrix diagonalization Using jacobi |
121 | 1 | equemene | ! Works only for symmetric matrices |
122 | 1 | equemene | ! EigvenVectors : V |
123 | 1 | equemene | ! Eigenvalues : D |
124 | 1 | equemene | ! |
125 | 1 | equemene | !============================================================ |
126 | 1 | equemene | ! |
127 | 1 | equemene | SUBROUTINE JACOBI(A,N,D,V,Nreal) |
128 | 1 | equemene | |
129 | 1 | equemene | !!!!!!!!!!!!!!!! |
130 | 1 | equemene | ! |
131 | 1 | equemene | ! Input: |
132 | 1 | equemene | ! N : Dimension of A |
133 | 1 | equemene | ! NReal : Actual dimensions of A, D and V. |
134 | 1 | equemene | ! |
135 | 1 | equemene | ! Input/output: |
136 | 1 | equemene | ! A(N,N) : Matrix to be diagonalized, store in a (Nreal,Nreal) matrix |
137 | 1 | equemene | ! Destroyed in output. |
138 | 1 | equemene | ! Output: |
139 | 1 | equemene | ! V(N,N) : Eigenvectors, stored in V(NReal, NReal) |
140 | 1 | equemene | ! D(N) : Eigenvalues, stored in D(NReal) |
141 | 1 | equemene | ! |
142 | 1 | equemene | |
143 | 1 | equemene | Use Vartypes |
144 | 1 | equemene | |
145 | 1 | equemene | IMPLICIT NONE |
146 | 1 | equemene | INTEGER(KINT), parameter :: max_it=500 |
147 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: B(:),Z(:) |
148 | 1 | equemene | |
149 | 1 | equemene | INTEGER(KINT) :: N,NReal |
150 | 1 | equemene | REAL(KREAL) :: A(NReal,NReal) |
151 | 1 | equemene | REAL(KREAL) :: V(Nreal,Nreal),D(Nreal) |
152 | 1 | equemene | |
153 | 1 | equemene | INTEGER(KINT) :: I, J,IP, IQ, NROT |
154 | 1 | equemene | REAL(KREAL) :: SM, H, Tresh, G, T, Theta, C, S, Tau |
155 | 1 | equemene | |
156 | 1 | equemene | allocate(B(N),Z(N)) |
157 | 1 | equemene | |
158 | 1 | equemene | DO IP=1,N |
159 | 1 | equemene | DO IQ=1,N |
160 | 1 | equemene | V(IP,IQ)=0. |
161 | 1 | equemene | END DO |
162 | 1 | equemene | V(IP,IP)=1. |
163 | 1 | equemene | END DO |
164 | 1 | equemene | DO IP=1,N |
165 | 1 | equemene | B(IP)=A(IP,IP) |
166 | 1 | equemene | D(IP)=B(IP) |
167 | 1 | equemene | Z(IP)=0. |
168 | 1 | equemene | END DO |
169 | 1 | equemene | NROT=0 |
170 | 1 | equemene | DO I=1,max_it |
171 | 1 | equemene | SM=0. |
172 | 1 | equemene | DO IP=1,N-1 |
173 | 1 | equemene | DO IQ=IP+1,N |
174 | 1 | equemene | SM=SM+ABS(A(IP,IQ)) |
175 | 1 | equemene | END DO |
176 | 1 | equemene | END DO |
177 | 1 | equemene | IF(SM.EQ.0.) GOTO 100 |
178 | 1 | equemene | IF(I.LT.4)THEN |
179 | 1 | equemene | TRESH=0.2*SM/N**2 |
180 | 1 | equemene | ELSE |
181 | 1 | equemene | TRESH=0. |
182 | 1 | equemene | ENDIF |
183 | 1 | equemene | DO IP=1,N-1 |
184 | 1 | equemene | DO IQ=IP+1,N |
185 | 1 | equemene | G=100.*ABS(A(IP,IQ)) |
186 | 1 | equemene | IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP))) & |
187 | 1 | equemene | .AND.(ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN |
188 | 1 | equemene | A(IP,IQ)=0. |
189 | 1 | equemene | ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN |
190 | 1 | equemene | H=D(IQ)-D(IP) |
191 | 1 | equemene | IF(ABS(H)+G.EQ.ABS(H))THEN |
192 | 1 | equemene | T=A(IP,IQ)/H |
193 | 1 | equemene | ELSE |
194 | 1 | equemene | THETA=0.5*H/A(IP,IQ) |
195 | 1 | equemene | T=1./(ABS(THETA)+SQRT(1.+THETA**2)) |
196 | 1 | equemene | IF(THETA.LT.0.)T=-T |
197 | 1 | equemene | ENDIF |
198 | 1 | equemene | C=1./SQRT(1+T**2) |
199 | 1 | equemene | S=T*C |
200 | 1 | equemene | TAU=S/(1.+C) |
201 | 1 | equemene | H=T*A(IP,IQ) |
202 | 1 | equemene | Z(IP)=Z(IP)-H |
203 | 1 | equemene | Z(IQ)=Z(IQ)+H |
204 | 1 | equemene | D(IP)=D(IP)-H |
205 | 1 | equemene | D(IQ)=D(IQ)+H |
206 | 1 | equemene | A(IP,IQ)=0. |
207 | 1 | equemene | DO J=1,IP-1 |
208 | 1 | equemene | G=A(J,IP) |
209 | 1 | equemene | H=A(J,IQ) |
210 | 1 | equemene | A(J,IP)=G-S*(H+G*TAU) |
211 | 1 | equemene | A(J,IQ)=H+S*(G-H*TAU) |
212 | 1 | equemene | END DO |
213 | 1 | equemene | DO J=IP+1,IQ-1 |
214 | 1 | equemene | G=A(IP,J) |
215 | 1 | equemene | H=A(J,IQ) |
216 | 1 | equemene | A(IP,J)=G-S*(H+G*TAU) |
217 | 1 | equemene | A(J,IQ)=H+S*(G-H*TAU) |
218 | 1 | equemene | END DO |
219 | 1 | equemene | DO J=IQ+1,N |
220 | 1 | equemene | G=A(IP,J) |
221 | 1 | equemene | H=A(IQ,J) |
222 | 1 | equemene | A(IP,J)=G-S*(H+G*TAU) |
223 | 1 | equemene | A(IQ,J)=H+S*(G-H*TAU) |
224 | 1 | equemene | END DO |
225 | 1 | equemene | DO J=1,N |
226 | 1 | equemene | G=V(J,IP) |
227 | 1 | equemene | H=V(J,IQ) |
228 | 1 | equemene | V(J,IP)=G-S*(H+G*TAU) |
229 | 1 | equemene | V(J,IQ)=H+S*(G-H*TAU) |
230 | 1 | equemene | END DO |
231 | 1 | equemene | NROT=NROT+1 |
232 | 1 | equemene | ENDIF |
233 | 1 | equemene | END DO |
234 | 1 | equemene | END DO |
235 | 1 | equemene | DO IP=1,N |
236 | 1 | equemene | B(IP)=B(IP)+Z(IP) |
237 | 1 | equemene | D(IP)=B(IP) |
238 | 1 | equemene | Z(IP)=0. |
239 | 1 | equemene | END DO |
240 | 1 | equemene | END DO |
241 | 1 | equemene | write(6,*) max_it,' iterations should never happen' |
242 | 1 | equemene | STOP |
243 | 1 | equemene | 100 DEALLOCATE(B,Z) |
244 | 1 | equemene | RETURN |
245 | 1 | equemene | END SUBROUTINE JACOBI |
246 | 1 | equemene | ! |
247 | 1 | equemene | !============================================================ |
248 | 1 | equemene | !c |
249 | 1 | equemene | !c ++ Sort Eigenvectors in ascending eigenvalues order |
250 | 1 | equemene | !c |
251 | 1 | equemene | !c============================================================ |
252 | 1 | equemene | !c |
253 | 1 | equemene | SUBROUTINE trie(nb_niv,ene,psi,nreal) |
254 | 1 | equemene | |
255 | 1 | equemene | ! |
256 | 1 | equemene | ! Input: |
257 | 1 | equemene | ! Nb_niv : Dimension of Psi |
258 | 1 | equemene | ! NReal : Actual dimensions of Psi, Ene |
259 | 1 | equemene | ! Input/output: |
260 | 1 | equemene | ! Psi(N,N) : Eigvenvectors, changed in output. Stored in a (Nreal,Nreal) matrix |
261 | 1 | equemene | ! Ene(N) : Eigenvalues, changed in output. Stored in Ene(NReal) |
262 | 1 | equemene | ! |
263 | 1 | equemene | !!!!!!!!!!!!!!!! |
264 | 1 | equemene | |
265 | 1 | equemene | Use VarTypes |
266 | 1 | equemene | IMPLICIT NONE |
267 | 1 | equemene | |
268 | 1 | equemene | integer(KINT) :: i,j,k,nb_niv,max_niv, nreal |
269 | 1 | equemene | real(KREAL) :: ene(nreal),psi(nreal,nreal) |
270 | 1 | equemene | real(KREAL) :: a |
271 | 1 | equemene | |
272 | 1 | equemene | |
273 | 1 | equemene | !!!!!!!!!!!!!!!! |
274 | 1 | equemene | |
275 | 1 | equemene | |
276 | 1 | equemene | DO i=1,nb_niv |
277 | 1 | equemene | DO j=i+1,nb_niv |
278 | 1 | equemene | IF (ene(i) .GT. ene(j)) THEN |
279 | 1 | equemene | ! permutation |
280 | 1 | equemene | a=ene(i) |
281 | 1 | equemene | ene(i)=ene(j) |
282 | 1 | equemene | ene(j)=a |
283 | 1 | equemene | |
284 | 1 | equemene | DO k=1,nb_niv |
285 | 1 | equemene | a=psi(k,i) |
286 | 1 | equemene | psi(k,i)=psi(k,j) |
287 | 1 | equemene | psi(k,j)=a |
288 | 1 | equemene | END DO |
289 | 1 | equemene | END IF |
290 | 1 | equemene | END DO |
291 | 1 | equemene | END DO |
292 | 1 | equemene | |
293 | 1 | equemene | END SUBROUTINE trie |
294 | 1 | equemene | |
295 | 1 | equemene | !============================================================ |
296 | 1 | equemene | !c |
297 | 1 | equemene | !c ++ Sort Eigenvectors in ascending eigenvalues order |
298 | 1 | equemene | !c |
299 | 1 | equemene | !c============================================================ |
300 | 1 | equemene | !c |
301 | 1 | equemene | SUBROUTINE SortEigenSys(N,Eigval,Eigvec) |
302 | 1 | equemene | |
303 | 1 | equemene | |
304 | 1 | equemene | ! |
305 | 1 | equemene | ! Input/output: |
306 | 1 | equemene | ! N : dimension of the system |
307 | 1 | equemene | ! EigVec(N,N) : Eigvenvectors, changed in output. Stored in a (N,N) matrix |
308 | 1 | equemene | ! EigVal(N) : Eigenvalues, changed in output. Stored in a (n) vector |
309 | 1 | equemene | ! |
310 | 1 | equemene | ! Process: |
311 | 1 | equemene | ! We use first a ranking, then a working array to reorder the eigenvalues and eigenvectors |
312 | 1 | equemene | |
313 | 1 | equemene | !!!!!!!!!!!!!!!! |
314 | 1 | equemene | |
315 | 1 | equemene | Use VarTypes |
316 | 1 | equemene | use m_mrgrnk |
317 | 1 | equemene | IMPLICIT NONE |
318 | 1 | equemene | |
319 | 1 | equemene | |
320 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: N |
321 | 1 | equemene | REAL(KREAL), INTENT(OUT) :: EigVal(N), Eigvec(N,N) |
322 | 1 | equemene | |
323 | 1 | equemene | integer(KINT) :: i,j,k |
324 | 1 | equemene | |
325 | 1 | equemene | INTEGER(KINT), ALLOCATABLE :: Rank(:) !N |
326 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: EigValT(:) !n |
327 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: EigVecT(:,:) !n,n |
328 | 1 | equemene | |
329 | 1 | equemene | !!!!!!!!!!!!!!!! |
330 | 1 | equemene | ALLOCATE(Rank(n),EigValT(n),EigVecT(n,n)) |
331 | 1 | equemene | CALL MrgRnk(EigVal,Rank) |
332 | 1 | equemene | |
333 | 1 | equemene | DO I=1,N |
334 | 1 | equemene | EigValT(I)=EigVal(Rank(I)) |
335 | 1 | equemene | EigVecT(I,1:N)=EigVec(Rank(I),1:N) |
336 | 1 | equemene | END DO |
337 | 1 | equemene | EigVal=EigValT |
338 | 1 | equemene | EigVec=EigVecT |
339 | 1 | equemene | |
340 | 1 | equemene | DEALLOCATE(Rank,EigValT,EigVecT) |
341 | 1 | equemene | |
342 | 1 | equemene | |
343 | 1 | equemene | END SUBROUTINE SortEigenSys |