root / src / Extrapol_baker.f90 @ 3
Historique | Voir | Annoter | Télécharger (10,67 ko)
1 | 1 | equemene | SUBROUTINE Extrapol_baker(s,dist,x0,y0,z0,xgeom,Coef,XgeomF) |
---|---|---|---|
2 | 1 | equemene | |
3 | 1 | equemene | ! This subroutine constructs the path, andabscissa if dist<>Infinity, it samples |
4 | 1 | equemene | ! the path to obtain geometries. |
5 | 1 | equemene | ! Basically, you call it twice: i) dist=infinity, it will calculate the length of the path |
6 | 1 | equemene | ! ii) dist finite, it will give you the images you want along the path. |
7 | 1 | equemene | ! |
8 | 1 | equemene | ! For now, it gives equidistant geometries. |
9 | 1 | equemene | ! |
10 | 1 | equemene | ! A reference geometry for the alignment: X0(Nat),Y0(Nat),Z0(Nat) |
11 | 1 | equemene | |
12 | 1 | equemene | use Path_module, only : IntCoordI, NMaxPtPath, XyzGeomF, IntCoordF, & |
13 | 1 | equemene | IntTangent, Renum, Nom, Order, MassAt, SGeom, Nat, NGeomI, & |
14 | 1 | equemene | NGeomF, Atome, NCoord, OrderInv, XyzGeomI,BTransInvF, & |
15 | 1 | equemene | XPrimitive,XPrimitiveF, NPrim, & |
16 | 1 | equemene | BTransInv_local,UMatF,UMat_local,FirstTimePathCreate,Pi |
17 | 1 | equemene | ! IntCoordI(NGeomI,3*Nat-6), Coef(NGeomI,NCoord), NMaxPtPath=1000 (default value) |
18 | 1 | equemene | ! More appropriate: IntCoordI(NGeomI,NCoord) |
19 | 1 | equemene | use Io_module |
20 | 1 | equemene | IMPLICIT NONE |
21 | 1 | equemene | |
22 | 1 | equemene | REAL(KREAL), INTENT(OUT) :: s |
23 | 1 | equemene | ! A reference geometry for the alignment: |
24 | 1 | equemene | REAL(KREAL), INTENT(IN) :: dist,X0(Nat),Y0(Nat),Z0(Nat) |
25 | 1 | equemene | ! Xgeom(NGeomI): abscissa of all initial geometries. |
26 | 1 | equemene | ! Coef(NGeomI,NCoord): spline coefficients. |
27 | 1 | equemene | REAL(KREAL), INTENT(IN) :: Xgeom(NGeomI),Coef(NGeomI,NCoord) |
28 | 1 | equemene | ! Number of the cycles for the optimization: |
29 | 1 | equemene | ! XGeomF(NGeomF): Final geometries. |
30 | 1 | equemene | REAL(KREAL), INTENT(OUT) :: XGeomF(NGeomF) |
31 | 1 | equemene | |
32 | 1 | equemene | INTEGER(KINT) :: IdxGeom, I, J, K, Idx, IdxAtom |
33 | 1 | equemene | REAL(KREAL) :: Rmsd,MRot(3,3), ds, u, v |
34 | 1 | equemene | REAL(KREAL) :: a_val, d |
35 | 1 | equemene | |
36 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: XyzTmp(:,:), XyzTmp2(:,:), DerInt(:) ! (Nat,3) |
37 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Xyz_k(:,:) ! (Nat,3) |
38 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: IntCoord_interpol(:) ! (3*Nat-6) |
39 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: IntCoord_k(:) ! (3*Nat-6) |
40 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: XPrimRef(:),XPrim(:) ! NPrim |
41 | 1 | equemene | |
42 | 1 | equemene | LOGICAL :: debug, print,printspline |
43 | 1 | equemene | LOGICAL, EXTERNAL :: valid |
44 | 1 | equemene | |
45 | 1 | equemene | INTEGER(KINT) :: NSpline |
46 | 1 | equemene | CHARACTER(LCHARS) :: FileSpline,TmpChar |
47 | 1 | equemene | |
48 | 1 | equemene | |
49 | 1 | equemene | ! We will calculate the length of the path, in MW coordinates... |
50 | 1 | equemene | ! this is done in a stupid way: we interpolate the Baker coordinates values, |
51 | 1 | equemene | ! convert them into cartesian, weight the cartesian |
52 | 1 | equemene | ! and calculate the evolution of the distance ! |
53 | 1 | equemene | ! We have to follow the same procedure for every geometry, |
54 | 1 | equemene | ! so even for the first one, we have to convert it from internal Baker |
55 | 1 | equemene | ! coordinates to cartesian ! |
56 | 1 | equemene | |
57 | 1 | equemene | debug=valid("Extrapol_baker") |
58 | 1 | equemene | print=valid("printgeom") |
59 | 1 | equemene | printspline=(valid("printspline").AND.(dist<=1e30)) |
60 | 1 | equemene | |
61 | 1 | equemene | if (debug) WRITE(*,*) "================= Entering Extrapol_baker ====================" |
62 | 1 | equemene | if (debug) WRITE(*,*) "DBG Extrapol_baker dist=",Dist |
63 | 1 | equemene | NSpline=int(NMaxPtPath/100) |
64 | 1 | equemene | !IF (printspline) THEN |
65 | 1 | equemene | ! WRITE(TmpChar,'(I5)') Iopt |
66 | 1 | equemene | ! FileSpline=Trim(adjustL(PathName)) // '_spline.' // AdjustL(TRIM(TmpChar)) |
67 | 1 | equemene | !OPEN(IOTMP,FILE=FileSpline) |
68 | 1 | equemene | ! END IF |
69 | 1 | equemene | |
70 | 1 | equemene | ALLOCATE(XyzTmp(Nat,3),XyzTmp2(Nat,3),IntCoord_interpol(NCoord),DerInt(NCoord)) |
71 | 1 | equemene | ALLOCATE(IntCoord_k(NCoord),Xyz_k(Nat,3)) |
72 | 1 | equemene | ALLOCATE(XPrimRef(NPrim),XPrim(NPrim)) |
73 | 1 | equemene | |
74 | 1 | equemene | ! XyzGeomI(:,:,:) ! (NGeomI,3,Nat) |
75 | 1 | equemene | ! IntCoordI(:,:) ! (NGeomI,3*Nat-6) |
76 | 1 | equemene | |
77 | 1 | equemene | !XyzGeomF(1,:,:)=Reshape(XyzTmp2(:,:),(/3,Nat/),ORDER=(/2,1/)) |
78 | 1 | equemene | XyzGeomF(1,:,:)=XyzGeomI(1,:,:) ! 1st index is geometry-index. |
79 | 1 | equemene | IntCoordF(1,:)=IntCoordI(1,:) |
80 | 1 | equemene | |
81 | 1 | equemene | ! We calculate the first derivatives |
82 | 1 | equemene | u=0.d0 |
83 | 1 | equemene | DO I=1,NCoord |
84 | 1 | equemene | ! Given the arrays xgeom(1:NGeomI) and IntCoordI(1:NGeomI,Idx) of length |
85 | 1 | equemene | ! NGeomI, which tabulate a function |
86 | 1 | equemene | ! (with the xgeom's in order), and given the array Coef(1:NGeomI,Idx), |
87 | 1 | equemene | ! which is the output from spline, and given a value of u, |
88 | 1 | equemene | ! this routine returns a cubic-spline interpolated value v. |
89 | 1 | equemene | ! and the derivative DerInt(Idx). |
90 | 1 | equemene | call splintder(u,v,DerInt(I),NGeomI,xgeom(1),IntCoordI(1,I),Coef(1,I)) |
91 | 1 | equemene | END DO |
92 | 1 | equemene | IntTangent(1,:)=DerInt |
93 | 1 | equemene | |
94 | 1 | equemene | IF (print.AND.(Dist.LE.1e20)) THEN |
95 | 1 | equemene | WRITE(IOOUT,'(1X,I5)') Nat |
96 | 1 | equemene | WRITE(IOOUT,*) "# Cartesian Coordinates for geom",1 |
97 | 1 | equemene | DO I=1,Nat |
98 | 1 | equemene | If (Renum) THEN |
99 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(I)), & |
100 | 1 | equemene | (XyzTmp2(Order(I),J),J=1,3) |
101 | 1 | equemene | ELSE |
102 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(OrderInv(I))), & |
103 | 1 | equemene | (XyzTmp2(I,J),J=1,3) |
104 | 1 | equemene | END IF |
105 | 1 | equemene | END DO |
106 | 1 | equemene | END IF ! matches IF (print.AND.(Dist.LE.1e20)) THEN |
107 | 1 | equemene | |
108 | 1 | equemene | XyzTmp(:,1) = XyzGeomI(1,1,:) ! 1st index is geometry-index. |
109 | 1 | equemene | XyzTmp(:,2) = XyzGeomI(1,2,:) |
110 | 1 | equemene | XyzTmp(:,3) = XyzGeomI(1,3,:) |
111 | 1 | equemene | |
112 | 1 | equemene | s=0.d0 |
113 | 1 | equemene | IntCoord_k=IntCoordF(1,:) |
114 | 1 | equemene | Xyz_k(:,1) = XyzGeomI(1,1,:) ! 1st index is geometry-index. |
115 | 1 | equemene | Xyz_k(:,2) = XyzGeomI(1,2,:) |
116 | 1 | equemene | Xyz_k(:,3) = XyzGeomI(1,3,:) |
117 | 1 | equemene | IdxGeom=1 |
118 | 1 | equemene | XPrimRef=XPrimitive(1,:) |
119 | 1 | equemene | XPrimitiveF(1,:)=XPrimitive(1,:) |
120 | 1 | equemene | DO K=1,NMaxPtPath |
121 | 1 | equemene | u=real(K)/NMaxPtPath*(NGeomI-1.) |
122 | 1 | equemene | |
123 | 1 | equemene | ! We generate the interpolated internal coordinates in v. |
124 | 1 | equemene | ! Given the arrays Xgeom(1:NGeomI) (Xgeom(NGeomI): abscissa of all initial geometries) |
125 | 1 | equemene | ! and IntCoordI(1:NGeomI,I) of length NGeomI, which tabulate a function (with the |
126 | 1 | equemene | ! Xgeom's in order), and given the array Coef(1:NGeomI,Idx), which is the output from |
127 | 1 | equemene | ! spline, and given a value of u, this routine returns a cubic-spline interpolated |
128 | 1 | equemene | ! value v and the derivative DerInt(I). |
129 | 1 | equemene | |
130 | 1 | equemene | ! this loop is to be confirmed: |
131 | 1 | equemene | ! IntCoordI(NGeomI,3*Nat-6) |
132 | 1 | equemene | DO I=1,NCoord |
133 | 1 | equemene | call splintder(u,v,DerInt(I),NGeomI,Xgeom(1),IntCoordI(1,I),Coef(1,I)) |
134 | 1 | equemene | IntCoord_interpol(I)=v |
135 | 1 | equemene | END DO |
136 | 1 | equemene | IF(.NOT.FirstTimePathCreate) Then |
137 | 1 | equemene | WRITE(*,*) "DBG Extrapol_baker Umat_local=UMatF" |
138 | 1 | equemene | DO I=1,NCoord ! these variables are used in ConvertBakerInternal_cart() |
139 | 1 | equemene | BTransInv_local(I,:) = BTransInvF(IdxGeom,I,:) |
140 | 1 | equemene | UMat_local(:,I) = UMatF(IdxGeom,:,I) |
141 | 1 | equemene | END DO |
142 | 1 | equemene | END IF |
143 | 1 | equemene | ! We convert it into Cartesian coordinates: |
144 | 1 | equemene | if (debug) WRITE(*,*) "DBG Extrapol_baker, call ConvertBakerInt_car for k=",k |
145 | 1 | equemene | Call ConvertBakerInternal_cart(IntCoord_k,IntCoord_interpol,Xyz_k(1,1), & |
146 | 1 | equemene | Xyz_k(1,2),Xyz_k(1,3),XyzTMP2(1,1),XyzTMP2(1,2),XyzTMP2(1,3),XPrim,XPrimRef) |
147 | 1 | equemene | XPrimRef=Xprim |
148 | 1 | equemene | IF(.NOT.FirstTimePathCreate) Then |
149 | 1 | equemene | DO I=1,NCoord ! these variables are used in ConvertBakerInternal_cart() |
150 | 1 | equemene | BTransInvF(IdxGeom,I,:) = BTransInv_local(I,:) |
151 | 1 | equemene | END DO |
152 | 1 | equemene | END IF |
153 | 1 | equemene | |
154 | 1 | equemene | if (debug) THEN |
155 | 1 | equemene | WRITE(*,*) "DBG Extrapol_baker, XyzTmp2 before RMSD" |
156 | 1 | equemene | DO I=1,Nat |
157 | 1 | equemene | IF (Renum) THEN |
158 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(I)), & |
159 | 1 | equemene | (XyzTmp2(Order(I),J),J=1,3) |
160 | 1 | equemene | ELSE |
161 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(OrderInv(I))), & |
162 | 1 | equemene | (XyzTmp2(I,J),J=1,3) |
163 | 1 | equemene | END IF |
164 | 1 | equemene | END DO |
165 | 1 | equemene | END IF |
166 | 1 | equemene | |
167 | 1 | equemene | |
168 | 1 | equemene | call CalcRmsd(Nat,XyzTmp(1:Nat,1),XyzTmp(1:Nat,2),XyzTmp(1:Nat,3), & |
169 | 1 | equemene | XyzTmp2(1:Nat,1),XyzTmp2(1:Nat,2),XyzTmp2(1:Nat,3), & |
170 | 1 | equemene | MRot,rmsd,.TRUE.,.TRUE.) |
171 | 1 | equemene | |
172 | 1 | equemene | |
173 | 1 | equemene | if (debug) THEN |
174 | 1 | equemene | WRITE(*,*) "DBG Extrapol_baker, XyzTmp2 after RMSD" |
175 | 1 | equemene | DO I=1,Nat |
176 | 1 | equemene | IF (Renum) THEN |
177 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(I)), & |
178 | 1 | equemene | (XyzTmp2(Order(I),J),J=1,3) |
179 | 1 | equemene | ELSE |
180 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(OrderInv(I))), & |
181 | 1 | equemene | (XyzTmp2(I,J),J=1,3) |
182 | 1 | equemene | END IF |
183 | 1 | equemene | END DO |
184 | 1 | equemene | END IF |
185 | 1 | equemene | |
186 | 1 | equemene | |
187 | 1 | equemene | IntCoord_k=IntCoord_interpol |
188 | 1 | equemene | Xyz_k(:,1)=XyzTMP2(:,1) |
189 | 1 | equemene | Xyz_k(:,2)=XyzTMP2(:,2) |
190 | 1 | equemene | Xyz_k(:,3)=XyzTMP2(:,3) |
191 | 1 | equemene | |
192 | 1 | equemene | ds=0. |
193 | 1 | equemene | DO I=1,Nat |
194 | 1 | equemene | DO J=1,3 |
195 | 1 | equemene | ds=ds+MassAt(I)*(XYZTMp2(I,J)-XYZTmp(I,J))**2 |
196 | 1 | equemene | XYZTmp(I,J)=XyzTMP2(I,J) |
197 | 1 | equemene | END DO |
198 | 1 | equemene | END DO |
199 | 1 | equemene | |
200 | 1 | equemene | s=s+sqrt(ds) |
201 | 1 | equemene | |
202 | 1 | equemene | IF (s>=dist) THEN |
203 | 1 | equemene | if (debug) THEN |
204 | 1 | equemene | WRITE(*,*) "DBG Extrapol_baker s,IdxGeom,dist",s,IdxGeom,dist |
205 | 1 | equemene | WRITE(*,'(50(1X,F12.8))') IntCoord_interpol |
206 | 1 | equemene | WRITE(*,*) "DBG Extrapol_baker Angles in deg ?" |
207 | 1 | equemene | WRITE(*,'(50(1X,F12.8))') IntCoord_interpol*180./pi |
208 | 1 | equemene | END IF |
209 | 1 | equemene | s=s-dist |
210 | 1 | equemene | IdxGeom=IdxGeom+1 |
211 | 1 | equemene | XprimitiveF(IdxGeom,:)=Xprim(:) |
212 | 1 | equemene | UMatF(IdxGeom,:,:)=UMat_local(:,:) |
213 | 1 | equemene | SGeom(IdxGeom)=s+IdxGeom*dist !SGeom(NGeomF) |
214 | 1 | equemene | XgeomF(IdxGeom)=u |
215 | 1 | equemene | XyzGeomF(IdxGeom,:,:)=Reshape(XyzTmp2(:,:),(/3,Nat/),ORDER=(/2,1/)) |
216 | 1 | equemene | |
217 | 1 | equemene | ! IntCoordF(NGeomF,NCoord): Final Internal coordinates for number of final |
218 | 1 | equemene | ! geometries. NCoord is the number of coordinates (NCoord) of each geometry. |
219 | 1 | equemene | IntCoordF(IdxGeom,:)=IntCoord_interpol(:) |
220 | 1 | equemene | IntTangent(IdxGeom,:)=DerInt |
221 | 1 | equemene | |
222 | 1 | equemene | IF (print) THEN |
223 | 1 | equemene | WRITE(IOOUT,'(1X,I5)') Nat |
224 | 1 | equemene | WRITE(IOOUT,*) "# Cartesian coord for Geometry ",IdxGeom,K |
225 | 1 | equemene | ! PFL 17/July/2006: only if we have more than 4 atoms. |
226 | 1 | equemene | IF (Nat.GE.4) THEN |
227 | 1 | equemene | Call CalcRmsd(Nat,x0,y0,z0, & |
228 | 1 | equemene | xyzTmp2(1,1),xyzTmp2(1,2),xyzTMP2(1,3), & |
229 | 1 | equemene | MRot,rmsd,.TRUE.,.TRUE.) |
230 | 1 | equemene | END IF |
231 | 1 | equemene | |
232 | 1 | equemene | DO I=1,Nat |
233 | 1 | equemene | IF (Renum) THEN |
234 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(I)), & |
235 | 1 | equemene | (XyzTmp2(Order(I),J),J=1,3) |
236 | 1 | equemene | ELSE |
237 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(OrderInv(I))), & |
238 | 1 | equemene | (XyzTmp2(I,J),J=1,3) |
239 | 1 | equemene | END IF |
240 | 1 | equemene | END DO |
241 | 1 | equemene | END IF !matches IF (print) THEN |
242 | 1 | equemene | END IF ! matches IF (s>=dist) THEN |
243 | 1 | equemene | END DO ! matches DO K=1,NMaxPtPath |
244 | 1 | equemene | |
245 | 1 | equemene | |
246 | 1 | equemene | if (s>=0.9*dist) THEN |
247 | 1 | equemene | s=s-dist |
248 | 1 | equemene | IdxGeom=IdxGeom+1 |
249 | 1 | equemene | SGeom(IdxGeom)=s+IdxGeom*dist |
250 | 1 | equemene | XgeomF(IdxGeom)=min(u,NGeomI-1.d0) |
251 | 1 | equemene | XyzGeomF(IdxGeom,:,:)=Reshape(XyzTmp2(:,:),(/3,Nat/),ORDER=(/2,1/)) |
252 | 1 | equemene | ! XyzGeomF(IdxGeom,:,:)=XyzTmp2(:,:) |
253 | 1 | equemene | |
254 | 1 | equemene | IntCoordF(IdxGeom,:)=IntCoord_interpol(:) |
255 | 1 | equemene | XprimitiveF(IdxGeom,:)=Xprim(:) |
256 | 1 | equemene | UMatF(IdxGeom,:,:)=UMat_local(:,:) |
257 | 1 | equemene | IntTangent(IdxGeom,:)=DerInt |
258 | 1 | equemene | |
259 | 1 | equemene | if (print) THEN |
260 | 1 | equemene | WRITE(IOOUT,'(1X,I5)') Nat |
261 | 1 | equemene | WRITE(IOOUT,*) "# Cartesian coord for Geometry ",IdxGeom,K |
262 | 1 | equemene | ! PFL 17/July/2006: only if we have more than 4 atoms. |
263 | 1 | equemene | IF (Nat.GE.4) THEN |
264 | 1 | equemene | Call CalcRmsd(Nat,x0,y0,z0, & |
265 | 1 | equemene | xyzTmp2(1,1),xyzTmp2(1,2),xyzTMP2(1,3), & |
266 | 1 | equemene | MRot,rmsd,.TRUE.,.TRUE.) |
267 | 1 | equemene | END IF |
268 | 1 | equemene | |
269 | 1 | equemene | DO I=1,Nat |
270 | 1 | equemene | IF (Renum) THEN |
271 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(I)), & |
272 | 1 | equemene | (XyzTmp2(Order(I),J),J=1,3) |
273 | 1 | equemene | ELSE |
274 | 1 | equemene | WRITE(IOOUT,'(1X,A2,3(1X,F15.6))') Nom(Atome(OrderInv(I))), & |
275 | 1 | equemene | (XyzTmp2(I,J),J=1,3) |
276 | 1 | equemene | END IF |
277 | 1 | equemene | END DO |
278 | 1 | equemene | END IF ! matches if (print) THEN |
279 | 1 | equemene | END IF ! matches if (s>=0.9*dist) THEN |
280 | 1 | equemene | |
281 | 1 | equemene | if (debug) WRITE(*,*) 's final =',s |
282 | 1 | equemene | if (debug) THEN |
283 | 1 | equemene | WRITE(*,*) "XPrimitiveF" |
284 | 1 | equemene | DO I=1,NGeomF |
285 | 1 | equemene | WRITE(*,'(1X,I5," : ",50(1X,F10.6))') I,XPrimitiveF(I,:) |
286 | 1 | equemene | END DO |
287 | 1 | equemene | END IF |
288 | 1 | equemene | |
289 | 1 | equemene | DEALLOCATE(XyzTmp,XyzTmp2,IntCoord_interpol,IntCoord_k,Xyz_k) |
290 | 1 | equemene | |
291 | 1 | equemene | if (printspline) CLOSE(IOTMP) |
292 | 1 | equemene | if (debug) WRITE(*,*) "================= Extrapol_baker Over =====================" |
293 | 1 | equemene | |
294 | 1 | equemene | END SUBROUTINE EXTRAPOL_BAKER |