root / src / lapack / double / dormqr.f @ 2
Historique | Voir | Annoter | Télécharger (7,41 ko)
1 |
SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, |
---|---|
2 |
$ WORK, LWORK, INFO ) |
3 |
* |
4 |
* -- LAPACK routine (version 3.2) -- |
5 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
6 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
7 |
* November 2006 |
8 |
* |
9 |
* .. Scalar Arguments .. |
10 |
CHARACTER SIDE, TRANS |
11 |
INTEGER INFO, K, LDA, LDC, LWORK, M, N |
12 |
* .. |
13 |
* .. Array Arguments .. |
14 |
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) |
15 |
* .. |
16 |
* |
17 |
* Purpose |
18 |
* ======= |
19 |
* |
20 |
* DORMQR overwrites the general real M-by-N matrix C with |
21 |
* |
22 |
* SIDE = 'L' SIDE = 'R' |
23 |
* TRANS = 'N': Q * C C * Q |
24 |
* TRANS = 'T': Q**T * C C * Q**T |
25 |
* |
26 |
* where Q is a real orthogonal matrix defined as the product of k |
27 |
* elementary reflectors |
28 |
* |
29 |
* Q = H(1) H(2) . . . H(k) |
30 |
* |
31 |
* as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N |
32 |
* if SIDE = 'R'. |
33 |
* |
34 |
* Arguments |
35 |
* ========= |
36 |
* |
37 |
* SIDE (input) CHARACTER*1 |
38 |
* = 'L': apply Q or Q**T from the Left; |
39 |
* = 'R': apply Q or Q**T from the Right. |
40 |
* |
41 |
* TRANS (input) CHARACTER*1 |
42 |
* = 'N': No transpose, apply Q; |
43 |
* = 'T': Transpose, apply Q**T. |
44 |
* |
45 |
* M (input) INTEGER |
46 |
* The number of rows of the matrix C. M >= 0. |
47 |
* |
48 |
* N (input) INTEGER |
49 |
* The number of columns of the matrix C. N >= 0. |
50 |
* |
51 |
* K (input) INTEGER |
52 |
* The number of elementary reflectors whose product defines |
53 |
* the matrix Q. |
54 |
* If SIDE = 'L', M >= K >= 0; |
55 |
* if SIDE = 'R', N >= K >= 0. |
56 |
* |
57 |
* A (input) DOUBLE PRECISION array, dimension (LDA,K) |
58 |
* The i-th column must contain the vector which defines the |
59 |
* elementary reflector H(i), for i = 1,2,...,k, as returned by |
60 |
* DGEQRF in the first k columns of its array argument A. |
61 |
* A is modified by the routine but restored on exit. |
62 |
* |
63 |
* LDA (input) INTEGER |
64 |
* The leading dimension of the array A. |
65 |
* If SIDE = 'L', LDA >= max(1,M); |
66 |
* if SIDE = 'R', LDA >= max(1,N). |
67 |
* |
68 |
* TAU (input) DOUBLE PRECISION array, dimension (K) |
69 |
* TAU(i) must contain the scalar factor of the elementary |
70 |
* reflector H(i), as returned by DGEQRF. |
71 |
* |
72 |
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) |
73 |
* On entry, the M-by-N matrix C. |
74 |
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. |
75 |
* |
76 |
* LDC (input) INTEGER |
77 |
* The leading dimension of the array C. LDC >= max(1,M). |
78 |
* |
79 |
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) |
80 |
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
81 |
* |
82 |
* LWORK (input) INTEGER |
83 |
* The dimension of the array WORK. |
84 |
* If SIDE = 'L', LWORK >= max(1,N); |
85 |
* if SIDE = 'R', LWORK >= max(1,M). |
86 |
* For optimum performance LWORK >= N*NB if SIDE = 'L', and |
87 |
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal |
88 |
* blocksize. |
89 |
* |
90 |
* If LWORK = -1, then a workspace query is assumed; the routine |
91 |
* only calculates the optimal size of the WORK array, returns |
92 |
* this value as the first entry of the WORK array, and no error |
93 |
* message related to LWORK is issued by XERBLA. |
94 |
* |
95 |
* INFO (output) INTEGER |
96 |
* = 0: successful exit |
97 |
* < 0: if INFO = -i, the i-th argument had an illegal value |
98 |
* |
99 |
* ===================================================================== |
100 |
* |
101 |
* .. Parameters .. |
102 |
INTEGER NBMAX, LDT |
103 |
PARAMETER ( NBMAX = 64, LDT = NBMAX+1 ) |
104 |
* .. |
105 |
* .. Local Scalars .. |
106 |
LOGICAL LEFT, LQUERY, NOTRAN |
107 |
INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK, |
108 |
$ LWKOPT, MI, NB, NBMIN, NI, NQ, NW |
109 |
* .. |
110 |
* .. Local Arrays .. |
111 |
DOUBLE PRECISION T( LDT, NBMAX ) |
112 |
* .. |
113 |
* .. External Functions .. |
114 |
LOGICAL LSAME |
115 |
INTEGER ILAENV |
116 |
EXTERNAL LSAME, ILAENV |
117 |
* .. |
118 |
* .. External Subroutines .. |
119 |
EXTERNAL DLARFB, DLARFT, DORM2R, XERBLA |
120 |
* .. |
121 |
* .. Intrinsic Functions .. |
122 |
INTRINSIC MAX, MIN |
123 |
* .. |
124 |
* .. Executable Statements .. |
125 |
* |
126 |
* Test the input arguments |
127 |
* |
128 |
INFO = 0 |
129 |
LEFT = LSAME( SIDE, 'L' ) |
130 |
NOTRAN = LSAME( TRANS, 'N' ) |
131 |
LQUERY = ( LWORK.EQ.-1 ) |
132 |
* |
133 |
* NQ is the order of Q and NW is the minimum dimension of WORK |
134 |
* |
135 |
IF( LEFT ) THEN |
136 |
NQ = M |
137 |
NW = N |
138 |
ELSE |
139 |
NQ = N |
140 |
NW = M |
141 |
END IF |
142 |
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN |
143 |
INFO = -1 |
144 |
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN |
145 |
INFO = -2 |
146 |
ELSE IF( M.LT.0 ) THEN |
147 |
INFO = -3 |
148 |
ELSE IF( N.LT.0 ) THEN |
149 |
INFO = -4 |
150 |
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN |
151 |
INFO = -5 |
152 |
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN |
153 |
INFO = -7 |
154 |
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN |
155 |
INFO = -10 |
156 |
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN |
157 |
INFO = -12 |
158 |
END IF |
159 |
* |
160 |
IF( INFO.EQ.0 ) THEN |
161 |
* |
162 |
* Determine the block size. NB may be at most NBMAX, where NBMAX |
163 |
* is used to define the local array T. |
164 |
* |
165 |
NB = MIN( NBMAX, ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N, K, |
166 |
$ -1 ) ) |
167 |
LWKOPT = MAX( 1, NW )*NB |
168 |
WORK( 1 ) = LWKOPT |
169 |
END IF |
170 |
* |
171 |
IF( INFO.NE.0 ) THEN |
172 |
CALL XERBLA( 'DORMQR', -INFO ) |
173 |
RETURN |
174 |
ELSE IF( LQUERY ) THEN |
175 |
RETURN |
176 |
END IF |
177 |
* |
178 |
* Quick return if possible |
179 |
* |
180 |
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN |
181 |
WORK( 1 ) = 1 |
182 |
RETURN |
183 |
END IF |
184 |
* |
185 |
NBMIN = 2 |
186 |
LDWORK = NW |
187 |
IF( NB.GT.1 .AND. NB.LT.K ) THEN |
188 |
IWS = NW*NB |
189 |
IF( LWORK.LT.IWS ) THEN |
190 |
NB = LWORK / LDWORK |
191 |
NBMIN = MAX( 2, ILAENV( 2, 'DORMQR', SIDE // TRANS, M, N, K, |
192 |
$ -1 ) ) |
193 |
END IF |
194 |
ELSE |
195 |
IWS = NW |
196 |
END IF |
197 |
* |
198 |
IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN |
199 |
* |
200 |
* Use unblocked code |
201 |
* |
202 |
CALL DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, |
203 |
$ IINFO ) |
204 |
ELSE |
205 |
* |
206 |
* Use blocked code |
207 |
* |
208 |
IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. |
209 |
$ ( .NOT.LEFT .AND. NOTRAN ) ) THEN |
210 |
I1 = 1 |
211 |
I2 = K |
212 |
I3 = NB |
213 |
ELSE |
214 |
I1 = ( ( K-1 ) / NB )*NB + 1 |
215 |
I2 = 1 |
216 |
I3 = -NB |
217 |
END IF |
218 |
* |
219 |
IF( LEFT ) THEN |
220 |
NI = N |
221 |
JC = 1 |
222 |
ELSE |
223 |
MI = M |
224 |
IC = 1 |
225 |
END IF |
226 |
* |
227 |
DO 10 I = I1, I2, I3 |
228 |
IB = MIN( NB, K-I+1 ) |
229 |
* |
230 |
* Form the triangular factor of the block reflector |
231 |
* H = H(i) H(i+1) . . . H(i+ib-1) |
232 |
* |
233 |
CALL DLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ), |
234 |
$ LDA, TAU( I ), T, LDT ) |
235 |
IF( LEFT ) THEN |
236 |
* |
237 |
* H or H' is applied to C(i:m,1:n) |
238 |
* |
239 |
MI = M - I + 1 |
240 |
IC = I |
241 |
ELSE |
242 |
* |
243 |
* H or H' is applied to C(1:m,i:n) |
244 |
* |
245 |
NI = N - I + 1 |
246 |
JC = I |
247 |
END IF |
248 |
* |
249 |
* Apply H or H' |
250 |
* |
251 |
CALL DLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI, |
252 |
$ IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, |
253 |
$ WORK, LDWORK ) |
254 |
10 CONTINUE |
255 |
END IF |
256 |
WORK( 1 ) = LWKOPT |
257 |
RETURN |
258 |
* |
259 |
* End of DORMQR |
260 |
* |
261 |
END |