Statistiques
| Révision :

root / src / lapack / double / dormlq.f @ 2

Historique | Voir | Annoter | Télécharger (7,57 ko)

1
      SUBROUTINE DORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
2
     $                   WORK, LWORK, INFO )
3
*
4
*  -- LAPACK routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          SIDE, TRANS
11
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DORMLQ overwrites the general real M-by-N matrix C with
21
*
22
*                  SIDE = 'L'     SIDE = 'R'
23
*  TRANS = 'N':      Q * C          C * Q
24
*  TRANS = 'T':      Q**T * C       C * Q**T
25
*
26
*  where Q is a real orthogonal matrix defined as the product of k
27
*  elementary reflectors
28
*
29
*        Q = H(k) . . . H(2) H(1)
30
*
31
*  as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
32
*  if SIDE = 'R'.
33
*
34
*  Arguments
35
*  =========
36
*
37
*  SIDE    (input) CHARACTER*1
38
*          = 'L': apply Q or Q**T from the Left;
39
*          = 'R': apply Q or Q**T from the Right.
40
*
41
*  TRANS   (input) CHARACTER*1
42
*          = 'N':  No transpose, apply Q;
43
*          = 'T':  Transpose, apply Q**T.
44
*
45
*  M       (input) INTEGER
46
*          The number of rows of the matrix C. M >= 0.
47
*
48
*  N       (input) INTEGER
49
*          The number of columns of the matrix C. N >= 0.
50
*
51
*  K       (input) INTEGER
52
*          The number of elementary reflectors whose product defines
53
*          the matrix Q.
54
*          If SIDE = 'L', M >= K >= 0;
55
*          if SIDE = 'R', N >= K >= 0.
56
*
57
*  A       (input) DOUBLE PRECISION array, dimension
58
*                               (LDA,M) if SIDE = 'L',
59
*                               (LDA,N) if SIDE = 'R'
60
*          The i-th row must contain the vector which defines the
61
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
62
*          DGELQF in the first k rows of its array argument A.
63
*          A is modified by the routine but restored on exit.
64
*
65
*  LDA     (input) INTEGER
66
*          The leading dimension of the array A. LDA >= max(1,K).
67
*
68
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
69
*          TAU(i) must contain the scalar factor of the elementary
70
*          reflector H(i), as returned by DGELQF.
71
*
72
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
73
*          On entry, the M-by-N matrix C.
74
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
75
*
76
*  LDC     (input) INTEGER
77
*          The leading dimension of the array C. LDC >= max(1,M).
78
*
79
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
80
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
81
*
82
*  LWORK   (input) INTEGER
83
*          The dimension of the array WORK.
84
*          If SIDE = 'L', LWORK >= max(1,N);
85
*          if SIDE = 'R', LWORK >= max(1,M).
86
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
87
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
88
*          blocksize.
89
*
90
*          If LWORK = -1, then a workspace query is assumed; the routine
91
*          only calculates the optimal size of the WORK array, returns
92
*          this value as the first entry of the WORK array, and no error
93
*          message related to LWORK is issued by XERBLA.
94
*
95
*  INFO    (output) INTEGER
96
*          = 0:  successful exit
97
*          < 0:  if INFO = -i, the i-th argument had an illegal value
98
*
99
*  =====================================================================
100
*
101
*     .. Parameters ..
102
      INTEGER            NBMAX, LDT
103
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
104
*     ..
105
*     .. Local Scalars ..
106
      LOGICAL            LEFT, LQUERY, NOTRAN
107
      CHARACTER          TRANST
108
      INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
109
     $                   LWKOPT, MI, NB, NBMIN, NI, NQ, NW
110
*     ..
111
*     .. Local Arrays ..
112
      DOUBLE PRECISION   T( LDT, NBMAX )
113
*     ..
114
*     .. External Functions ..
115
      LOGICAL            LSAME
116
      INTEGER            ILAENV
117
      EXTERNAL           LSAME, ILAENV
118
*     ..
119
*     .. External Subroutines ..
120
      EXTERNAL           DLARFB, DLARFT, DORML2, XERBLA
121
*     ..
122
*     .. Intrinsic Functions ..
123
      INTRINSIC          MAX, MIN
124
*     ..
125
*     .. Executable Statements ..
126
*
127
*     Test the input arguments
128
*
129
      INFO = 0
130
      LEFT = LSAME( SIDE, 'L' )
131
      NOTRAN = LSAME( TRANS, 'N' )
132
      LQUERY = ( LWORK.EQ.-1 )
133
*
134
*     NQ is the order of Q and NW is the minimum dimension of WORK
135
*
136
      IF( LEFT ) THEN
137
         NQ = M
138
         NW = N
139
      ELSE
140
         NQ = N
141
         NW = M
142
      END IF
143
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
144
         INFO = -1
145
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
146
         INFO = -2
147
      ELSE IF( M.LT.0 ) THEN
148
         INFO = -3
149
      ELSE IF( N.LT.0 ) THEN
150
         INFO = -4
151
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
152
         INFO = -5
153
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
154
         INFO = -7
155
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
156
         INFO = -10
157
      ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
158
         INFO = -12
159
      END IF
160
*
161
      IF( INFO.EQ.0 ) THEN
162
*
163
*        Determine the block size.  NB may be at most NBMAX, where NBMAX
164
*        is used to define the local array T.
165
*
166
         NB = MIN( NBMAX, ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N, K,
167
     $        -1 ) )
168
         LWKOPT = MAX( 1, NW )*NB
169
         WORK( 1 ) = LWKOPT
170
      END IF
171
*
172
      IF( INFO.NE.0 ) THEN
173
         CALL XERBLA( 'DORMLQ', -INFO )
174
         RETURN
175
      ELSE IF( LQUERY ) THEN
176
         RETURN
177
      END IF
178
*
179
*     Quick return if possible
180
*
181
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
182
         WORK( 1 ) = 1
183
         RETURN
184
      END IF
185
*
186
      NBMIN = 2
187
      LDWORK = NW
188
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
189
         IWS = NW*NB
190
         IF( LWORK.LT.IWS ) THEN
191
            NB = LWORK / LDWORK
192
            NBMIN = MAX( 2, ILAENV( 2, 'DORMLQ', SIDE // TRANS, M, N, K,
193
     $              -1 ) )
194
         END IF
195
      ELSE
196
         IWS = NW
197
      END IF
198
*
199
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
200
*
201
*        Use unblocked code
202
*
203
         CALL DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
204
     $                IINFO )
205
      ELSE
206
*
207
*        Use blocked code
208
*
209
         IF( ( LEFT .AND. NOTRAN ) .OR.
210
     $       ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
211
            I1 = 1
212
            I2 = K
213
            I3 = NB
214
         ELSE
215
            I1 = ( ( K-1 ) / NB )*NB + 1
216
            I2 = 1
217
            I3 = -NB
218
         END IF
219
*
220
         IF( LEFT ) THEN
221
            NI = N
222
            JC = 1
223
         ELSE
224
            MI = M
225
            IC = 1
226
         END IF
227
*
228
         IF( NOTRAN ) THEN
229
            TRANST = 'T'
230
         ELSE
231
            TRANST = 'N'
232
         END IF
233
*
234
         DO 10 I = I1, I2, I3
235
            IB = MIN( NB, K-I+1 )
236
*
237
*           Form the triangular factor of the block reflector
238
*           H = H(i) H(i+1) . . . H(i+ib-1)
239
*
240
            CALL DLARFT( 'Forward', 'Rowwise', NQ-I+1, IB, A( I, I ),
241
     $                   LDA, TAU( I ), T, LDT )
242
            IF( LEFT ) THEN
243
*
244
*              H or H' is applied to C(i:m,1:n)
245
*
246
               MI = M - I + 1
247
               IC = I
248
            ELSE
249
*
250
*              H or H' is applied to C(1:m,i:n)
251
*
252
               NI = N - I + 1
253
               JC = I
254
            END IF
255
*
256
*           Apply H or H'
257
*
258
            CALL DLARFB( SIDE, TRANST, 'Forward', 'Rowwise', MI, NI, IB,
259
     $                   A( I, I ), LDA, T, LDT, C( IC, JC ), LDC, WORK,
260
     $                   LDWORK )
261
   10    CONTINUE
262
      END IF
263
      WORK( 1 ) = LWKOPT
264
      RETURN
265
*
266
*     End of DORMLQ
267
*
268
      END