Statistiques
| Révision :

root / src / lapack / double / dorm2r.f @ 2

Historique | Voir | Annoter | Télécharger (5,17 ko)

1
      SUBROUTINE DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
2
     $                   WORK, INFO )
3
*
4
*  -- LAPACK routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          SIDE, TRANS
11
      INTEGER            INFO, K, LDA, LDC, M, N
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15
*     ..
16
*
17
*  Purpose
18
*  =======
19
*
20
*  DORM2R overwrites the general real m by n matrix C with
21
*
22
*        Q * C  if SIDE = 'L' and TRANS = 'N', or
23
*
24
*        Q'* C  if SIDE = 'L' and TRANS = 'T', or
25
*
26
*        C * Q  if SIDE = 'R' and TRANS = 'N', or
27
*
28
*        C * Q' if SIDE = 'R' and TRANS = 'T',
29
*
30
*  where Q is a real orthogonal matrix defined as the product of k
31
*  elementary reflectors
32
*
33
*        Q = H(1) H(2) . . . H(k)
34
*
35
*  as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
36
*  if SIDE = 'R'.
37
*
38
*  Arguments
39
*  =========
40
*
41
*  SIDE    (input) CHARACTER*1
42
*          = 'L': apply Q or Q' from the Left
43
*          = 'R': apply Q or Q' from the Right
44
*
45
*  TRANS   (input) CHARACTER*1
46
*          = 'N': apply Q  (No transpose)
47
*          = 'T': apply Q' (Transpose)
48
*
49
*  M       (input) INTEGER
50
*          The number of rows of the matrix C. M >= 0.
51
*
52
*  N       (input) INTEGER
53
*          The number of columns of the matrix C. N >= 0.
54
*
55
*  K       (input) INTEGER
56
*          The number of elementary reflectors whose product defines
57
*          the matrix Q.
58
*          If SIDE = 'L', M >= K >= 0;
59
*          if SIDE = 'R', N >= K >= 0.
60
*
61
*  A       (input) DOUBLE PRECISION array, dimension (LDA,K)
62
*          The i-th column must contain the vector which defines the
63
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
64
*          DGEQRF in the first k columns of its array argument A.
65
*          A is modified by the routine but restored on exit.
66
*
67
*  LDA     (input) INTEGER
68
*          The leading dimension of the array A.
69
*          If SIDE = 'L', LDA >= max(1,M);
70
*          if SIDE = 'R', LDA >= max(1,N).
71
*
72
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
73
*          TAU(i) must contain the scalar factor of the elementary
74
*          reflector H(i), as returned by DGEQRF.
75
*
76
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
77
*          On entry, the m by n matrix C.
78
*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
79
*
80
*  LDC     (input) INTEGER
81
*          The leading dimension of the array C. LDC >= max(1,M).
82
*
83
*  WORK    (workspace) DOUBLE PRECISION array, dimension
84
*                                   (N) if SIDE = 'L',
85
*                                   (M) if SIDE = 'R'
86
*
87
*  INFO    (output) INTEGER
88
*          = 0: successful exit
89
*          < 0: if INFO = -i, the i-th argument had an illegal value
90
*
91
*  =====================================================================
92
*
93
*     .. Parameters ..
94
      DOUBLE PRECISION   ONE
95
      PARAMETER          ( ONE = 1.0D+0 )
96
*     ..
97
*     .. Local Scalars ..
98
      LOGICAL            LEFT, NOTRAN
99
      INTEGER            I, I1, I2, I3, IC, JC, MI, NI, NQ
100
      DOUBLE PRECISION   AII
101
*     ..
102
*     .. External Functions ..
103
      LOGICAL            LSAME
104
      EXTERNAL           LSAME
105
*     ..
106
*     .. External Subroutines ..
107
      EXTERNAL           DLARF, XERBLA
108
*     ..
109
*     .. Intrinsic Functions ..
110
      INTRINSIC          MAX
111
*     ..
112
*     .. Executable Statements ..
113
*
114
*     Test the input arguments
115
*
116
      INFO = 0
117
      LEFT = LSAME( SIDE, 'L' )
118
      NOTRAN = LSAME( TRANS, 'N' )
119
*
120
*     NQ is the order of Q
121
*
122
      IF( LEFT ) THEN
123
         NQ = M
124
      ELSE
125
         NQ = N
126
      END IF
127
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
128
         INFO = -1
129
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
130
         INFO = -2
131
      ELSE IF( M.LT.0 ) THEN
132
         INFO = -3
133
      ELSE IF( N.LT.0 ) THEN
134
         INFO = -4
135
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
136
         INFO = -5
137
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
138
         INFO = -7
139
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
140
         INFO = -10
141
      END IF
142
      IF( INFO.NE.0 ) THEN
143
         CALL XERBLA( 'DORM2R', -INFO )
144
         RETURN
145
      END IF
146
*
147
*     Quick return if possible
148
*
149
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
150
     $   RETURN
151
*
152
      IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) )
153
     $     THEN
154
         I1 = 1
155
         I2 = K
156
         I3 = 1
157
      ELSE
158
         I1 = K
159
         I2 = 1
160
         I3 = -1
161
      END IF
162
*
163
      IF( LEFT ) THEN
164
         NI = N
165
         JC = 1
166
      ELSE
167
         MI = M
168
         IC = 1
169
      END IF
170
*
171
      DO 10 I = I1, I2, I3
172
         IF( LEFT ) THEN
173
*
174
*           H(i) is applied to C(i:m,1:n)
175
*
176
            MI = M - I + 1
177
            IC = I
178
         ELSE
179
*
180
*           H(i) is applied to C(1:m,i:n)
181
*
182
            NI = N - I + 1
183
            JC = I
184
         END IF
185
*
186
*        Apply H(i)
187
*
188
         AII = A( I, I )
189
         A( I, I ) = ONE
190
         CALL DLARF( SIDE, MI, NI, A( I, I ), 1, TAU( I ), C( IC, JC ),
191
     $               LDC, WORK )
192
         A( I, I ) = AII
193
   10 CONTINUE
194
      RETURN
195
*
196
*     End of DORM2R
197
*
198
      END