root / src / lapack / double / dlascl.f @ 2
Historique | Voir | Annoter | Télécharger (7,76 ko)
1 |
SUBROUTINE DLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO ) |
---|---|
2 |
* |
3 |
* -- LAPACK auxiliary routine (version 3.2) -- |
4 |
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 |
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 |
* November 2006 |
7 |
* |
8 |
* .. Scalar Arguments .. |
9 |
CHARACTER TYPE |
10 |
INTEGER INFO, KL, KU, LDA, M, N |
11 |
DOUBLE PRECISION CFROM, CTO |
12 |
* .. |
13 |
* .. Array Arguments .. |
14 |
DOUBLE PRECISION A( LDA, * ) |
15 |
* .. |
16 |
* |
17 |
* Purpose |
18 |
* ======= |
19 |
* |
20 |
* DLASCL multiplies the M by N real matrix A by the real scalar |
21 |
* CTO/CFROM. This is done without over/underflow as long as the final |
22 |
* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that |
23 |
* A may be full, upper triangular, lower triangular, upper Hessenberg, |
24 |
* or banded. |
25 |
* |
26 |
* Arguments |
27 |
* ========= |
28 |
* |
29 |
* TYPE (input) CHARACTER*1 |
30 |
* TYPE indices the storage type of the input matrix. |
31 |
* = 'G': A is a full matrix. |
32 |
* = 'L': A is a lower triangular matrix. |
33 |
* = 'U': A is an upper triangular matrix. |
34 |
* = 'H': A is an upper Hessenberg matrix. |
35 |
* = 'B': A is a symmetric band matrix with lower bandwidth KL |
36 |
* and upper bandwidth KU and with the only the lower |
37 |
* half stored. |
38 |
* = 'Q': A is a symmetric band matrix with lower bandwidth KL |
39 |
* and upper bandwidth KU and with the only the upper |
40 |
* half stored. |
41 |
* = 'Z': A is a band matrix with lower bandwidth KL and upper |
42 |
* bandwidth KU. |
43 |
* |
44 |
* KL (input) INTEGER |
45 |
* The lower bandwidth of A. Referenced only if TYPE = 'B', |
46 |
* 'Q' or 'Z'. |
47 |
* |
48 |
* KU (input) INTEGER |
49 |
* The upper bandwidth of A. Referenced only if TYPE = 'B', |
50 |
* 'Q' or 'Z'. |
51 |
* |
52 |
* CFROM (input) DOUBLE PRECISION |
53 |
* CTO (input) DOUBLE PRECISION |
54 |
* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed |
55 |
* without over/underflow if the final result CTO*A(I,J)/CFROM |
56 |
* can be represented without over/underflow. CFROM must be |
57 |
* nonzero. |
58 |
* |
59 |
* M (input) INTEGER |
60 |
* The number of rows of the matrix A. M >= 0. |
61 |
* |
62 |
* N (input) INTEGER |
63 |
* The number of columns of the matrix A. N >= 0. |
64 |
* |
65 |
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
66 |
* The matrix to be multiplied by CTO/CFROM. See TYPE for the |
67 |
* storage type. |
68 |
* |
69 |
* LDA (input) INTEGER |
70 |
* The leading dimension of the array A. LDA >= max(1,M). |
71 |
* |
72 |
* INFO (output) INTEGER |
73 |
* 0 - successful exit |
74 |
* <0 - if INFO = -i, the i-th argument had an illegal value. |
75 |
* |
76 |
* ===================================================================== |
77 |
* |
78 |
* .. Parameters .. |
79 |
DOUBLE PRECISION ZERO, ONE |
80 |
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) |
81 |
* .. |
82 |
* .. Local Scalars .. |
83 |
LOGICAL DONE |
84 |
INTEGER I, ITYPE, J, K1, K2, K3, K4 |
85 |
DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM |
86 |
* .. |
87 |
* .. External Functions .. |
88 |
LOGICAL LSAME, DISNAN |
89 |
DOUBLE PRECISION DLAMCH |
90 |
EXTERNAL LSAME, DLAMCH, DISNAN |
91 |
* .. |
92 |
* .. Intrinsic Functions .. |
93 |
INTRINSIC ABS, MAX, MIN |
94 |
* .. |
95 |
* .. External Subroutines .. |
96 |
EXTERNAL XERBLA |
97 |
* .. |
98 |
* .. Executable Statements .. |
99 |
* |
100 |
* Test the input arguments |
101 |
* |
102 |
INFO = 0 |
103 |
* |
104 |
IF( LSAME( TYPE, 'G' ) ) THEN |
105 |
ITYPE = 0 |
106 |
ELSE IF( LSAME( TYPE, 'L' ) ) THEN |
107 |
ITYPE = 1 |
108 |
ELSE IF( LSAME( TYPE, 'U' ) ) THEN |
109 |
ITYPE = 2 |
110 |
ELSE IF( LSAME( TYPE, 'H' ) ) THEN |
111 |
ITYPE = 3 |
112 |
ELSE IF( LSAME( TYPE, 'B' ) ) THEN |
113 |
ITYPE = 4 |
114 |
ELSE IF( LSAME( TYPE, 'Q' ) ) THEN |
115 |
ITYPE = 5 |
116 |
ELSE IF( LSAME( TYPE, 'Z' ) ) THEN |
117 |
ITYPE = 6 |
118 |
ELSE |
119 |
ITYPE = -1 |
120 |
END IF |
121 |
* |
122 |
IF( ITYPE.EQ.-1 ) THEN |
123 |
INFO = -1 |
124 |
ELSE IF( CFROM.EQ.ZERO .OR. DISNAN(CFROM) ) THEN |
125 |
INFO = -4 |
126 |
ELSE IF( DISNAN(CTO) ) THEN |
127 |
INFO = -5 |
128 |
ELSE IF( M.LT.0 ) THEN |
129 |
INFO = -6 |
130 |
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR. |
131 |
$ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN |
132 |
INFO = -7 |
133 |
ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN |
134 |
INFO = -9 |
135 |
ELSE IF( ITYPE.GE.4 ) THEN |
136 |
IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN |
137 |
INFO = -2 |
138 |
ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR. |
139 |
$ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) ) |
140 |
$ THEN |
141 |
INFO = -3 |
142 |
ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR. |
143 |
$ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR. |
144 |
$ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN |
145 |
INFO = -9 |
146 |
END IF |
147 |
END IF |
148 |
* |
149 |
IF( INFO.NE.0 ) THEN |
150 |
CALL XERBLA( 'DLASCL', -INFO ) |
151 |
RETURN |
152 |
END IF |
153 |
* |
154 |
* Quick return if possible |
155 |
* |
156 |
IF( N.EQ.0 .OR. M.EQ.0 ) |
157 |
$ RETURN |
158 |
* |
159 |
* Get machine parameters |
160 |
* |
161 |
SMLNUM = DLAMCH( 'S' ) |
162 |
BIGNUM = ONE / SMLNUM |
163 |
* |
164 |
CFROMC = CFROM |
165 |
CTOC = CTO |
166 |
* |
167 |
10 CONTINUE |
168 |
CFROM1 = CFROMC*SMLNUM |
169 |
IF( CFROM1.EQ.CFROMC ) THEN |
170 |
! CFROMC is an inf. Multiply by a correctly signed zero for |
171 |
! finite CTOC, or a NaN if CTOC is infinite. |
172 |
MUL = CTOC / CFROMC |
173 |
DONE = .TRUE. |
174 |
CTO1 = CTOC |
175 |
ELSE |
176 |
CTO1 = CTOC / BIGNUM |
177 |
IF( CTO1.EQ.CTOC ) THEN |
178 |
! CTOC is either 0 or an inf. In both cases, CTOC itself |
179 |
! serves as the correct multiplication factor. |
180 |
MUL = CTOC |
181 |
DONE = .TRUE. |
182 |
CFROMC = ONE |
183 |
ELSE IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN |
184 |
MUL = SMLNUM |
185 |
DONE = .FALSE. |
186 |
CFROMC = CFROM1 |
187 |
ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN |
188 |
MUL = BIGNUM |
189 |
DONE = .FALSE. |
190 |
CTOC = CTO1 |
191 |
ELSE |
192 |
MUL = CTOC / CFROMC |
193 |
DONE = .TRUE. |
194 |
END IF |
195 |
END IF |
196 |
* |
197 |
IF( ITYPE.EQ.0 ) THEN |
198 |
* |
199 |
* Full matrix |
200 |
* |
201 |
DO 30 J = 1, N |
202 |
DO 20 I = 1, M |
203 |
A( I, J ) = A( I, J )*MUL |
204 |
20 CONTINUE |
205 |
30 CONTINUE |
206 |
* |
207 |
ELSE IF( ITYPE.EQ.1 ) THEN |
208 |
* |
209 |
* Lower triangular matrix |
210 |
* |
211 |
DO 50 J = 1, N |
212 |
DO 40 I = J, M |
213 |
A( I, J ) = A( I, J )*MUL |
214 |
40 CONTINUE |
215 |
50 CONTINUE |
216 |
* |
217 |
ELSE IF( ITYPE.EQ.2 ) THEN |
218 |
* |
219 |
* Upper triangular matrix |
220 |
* |
221 |
DO 70 J = 1, N |
222 |
DO 60 I = 1, MIN( J, M ) |
223 |
A( I, J ) = A( I, J )*MUL |
224 |
60 CONTINUE |
225 |
70 CONTINUE |
226 |
* |
227 |
ELSE IF( ITYPE.EQ.3 ) THEN |
228 |
* |
229 |
* Upper Hessenberg matrix |
230 |
* |
231 |
DO 90 J = 1, N |
232 |
DO 80 I = 1, MIN( J+1, M ) |
233 |
A( I, J ) = A( I, J )*MUL |
234 |
80 CONTINUE |
235 |
90 CONTINUE |
236 |
* |
237 |
ELSE IF( ITYPE.EQ.4 ) THEN |
238 |
* |
239 |
* Lower half of a symmetric band matrix |
240 |
* |
241 |
K3 = KL + 1 |
242 |
K4 = N + 1 |
243 |
DO 110 J = 1, N |
244 |
DO 100 I = 1, MIN( K3, K4-J ) |
245 |
A( I, J ) = A( I, J )*MUL |
246 |
100 CONTINUE |
247 |
110 CONTINUE |
248 |
* |
249 |
ELSE IF( ITYPE.EQ.5 ) THEN |
250 |
* |
251 |
* Upper half of a symmetric band matrix |
252 |
* |
253 |
K1 = KU + 2 |
254 |
K3 = KU + 1 |
255 |
DO 130 J = 1, N |
256 |
DO 120 I = MAX( K1-J, 1 ), K3 |
257 |
A( I, J ) = A( I, J )*MUL |
258 |
120 CONTINUE |
259 |
130 CONTINUE |
260 |
* |
261 |
ELSE IF( ITYPE.EQ.6 ) THEN |
262 |
* |
263 |
* Band matrix |
264 |
* |
265 |
K1 = KL + KU + 2 |
266 |
K2 = KL + 1 |
267 |
K3 = 2*KL + KU + 1 |
268 |
K4 = KL + KU + 1 + M |
269 |
DO 150 J = 1, N |
270 |
DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) |
271 |
A( I, J ) = A( I, J )*MUL |
272 |
140 CONTINUE |
273 |
150 CONTINUE |
274 |
* |
275 |
END IF |
276 |
* |
277 |
IF( .NOT.DONE ) |
278 |
$ GO TO 10 |
279 |
* |
280 |
RETURN |
281 |
* |
282 |
* End of DLASCL |
283 |
* |
284 |
END |