Statistiques
| Révision :

root / src / lapack / double / dlarzb.f @ 2

Historique | Voir | Annoter | Télécharger (6,53 ko)

1
      SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
2
     $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
3
*
4
*  -- LAPACK routine (version 3.2) --
5
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7
*     November 2006
8
*
9
*     .. Scalar Arguments ..
10
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
11
      INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
12
*     ..
13
*     .. Array Arguments ..
14
      DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
15
     $                   WORK( LDWORK, * )
16
*     ..
17
*
18
*  Purpose
19
*  =======
20
*
21
*  DLARZB applies a real block reflector H or its transpose H**T to
22
*  a real distributed M-by-N  C from the left or the right.
23
*
24
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
25
*
26
*  Arguments
27
*  =========
28
*
29
*  SIDE    (input) CHARACTER*1
30
*          = 'L': apply H or H' from the Left
31
*          = 'R': apply H or H' from the Right
32
*
33
*  TRANS   (input) CHARACTER*1
34
*          = 'N': apply H (No transpose)
35
*          = 'C': apply H' (Transpose)
36
*
37
*  DIRECT  (input) CHARACTER*1
38
*          Indicates how H is formed from a product of elementary
39
*          reflectors
40
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
41
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
42
*
43
*  STOREV  (input) CHARACTER*1
44
*          Indicates how the vectors which define the elementary
45
*          reflectors are stored:
46
*          = 'C': Columnwise                        (not supported yet)
47
*          = 'R': Rowwise
48
*
49
*  M       (input) INTEGER
50
*          The number of rows of the matrix C.
51
*
52
*  N       (input) INTEGER
53
*          The number of columns of the matrix C.
54
*
55
*  K       (input) INTEGER
56
*          The order of the matrix T (= the number of elementary
57
*          reflectors whose product defines the block reflector).
58
*
59
*  L       (input) INTEGER
60
*          The number of columns of the matrix V containing the
61
*          meaningful part of the Householder reflectors.
62
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
63
*
64
*  V       (input) DOUBLE PRECISION array, dimension (LDV,NV).
65
*          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
66
*
67
*  LDV     (input) INTEGER
68
*          The leading dimension of the array V.
69
*          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
70
*
71
*  T       (input) DOUBLE PRECISION array, dimension (LDT,K)
72
*          The triangular K-by-K matrix T in the representation of the
73
*          block reflector.
74
*
75
*  LDT     (input) INTEGER
76
*          The leading dimension of the array T. LDT >= K.
77
*
78
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
79
*          On entry, the M-by-N matrix C.
80
*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
81
*
82
*  LDC     (input) INTEGER
83
*          The leading dimension of the array C. LDC >= max(1,M).
84
*
85
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
86
*
87
*  LDWORK  (input) INTEGER
88
*          The leading dimension of the array WORK.
89
*          If SIDE = 'L', LDWORK >= max(1,N);
90
*          if SIDE = 'R', LDWORK >= max(1,M).
91
*
92
*  Further Details
93
*  ===============
94
*
95
*  Based on contributions by
96
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
97
*
98
*  =====================================================================
99
*
100
*     .. Parameters ..
101
      DOUBLE PRECISION   ONE
102
      PARAMETER          ( ONE = 1.0D+0 )
103
*     ..
104
*     .. Local Scalars ..
105
      CHARACTER          TRANST
106
      INTEGER            I, INFO, J
107
*     ..
108
*     .. External Functions ..
109
      LOGICAL            LSAME
110
      EXTERNAL           LSAME
111
*     ..
112
*     .. External Subroutines ..
113
      EXTERNAL           DCOPY, DGEMM, DTRMM, XERBLA
114
*     ..
115
*     .. Executable Statements ..
116
*
117
*     Quick return if possible
118
*
119
      IF( M.LE.0 .OR. N.LE.0 )
120
     $   RETURN
121
*
122
*     Check for currently supported options
123
*
124
      INFO = 0
125
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
126
         INFO = -3
127
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
128
         INFO = -4
129
      END IF
130
      IF( INFO.NE.0 ) THEN
131
         CALL XERBLA( 'DLARZB', -INFO )
132
         RETURN
133
      END IF
134
*
135
      IF( LSAME( TRANS, 'N' ) ) THEN
136
         TRANST = 'T'
137
      ELSE
138
         TRANST = 'N'
139
      END IF
140
*
141
      IF( LSAME( SIDE, 'L' ) ) THEN
142
*
143
*        Form  H * C  or  H' * C
144
*
145
*        W( 1:n, 1:k ) = C( 1:k, 1:n )'
146
*
147
         DO 10 J = 1, K
148
            CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
149
   10    CONTINUE
150
*
151
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
152
*                        C( m-l+1:m, 1:n )' * V( 1:k, 1:l )'
153
*
154
         IF( L.GT.0 )
155
     $      CALL DGEMM( 'Transpose', 'Transpose', N, K, L, ONE,
156
     $                  C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
157
*
158
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T'  or  W( 1:m, 1:k ) * T
159
*
160
         CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
161
     $               LDT, WORK, LDWORK )
162
*
163
*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )'
164
*
165
         DO 30 J = 1, N
166
            DO 20 I = 1, K
167
               C( I, J ) = C( I, J ) - WORK( J, I )
168
   20       CONTINUE
169
   30    CONTINUE
170
*
171
*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
172
*                            V( 1:k, 1:l )' * W( 1:n, 1:k )'
173
*
174
         IF( L.GT.0 )
175
     $      CALL DGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
176
     $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
177
*
178
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
179
*
180
*        Form  C * H  or  C * H'
181
*
182
*        W( 1:m, 1:k ) = C( 1:m, 1:k )
183
*
184
         DO 40 J = 1, K
185
            CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
186
   40    CONTINUE
187
*
188
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
189
*                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )'
190
*
191
         IF( L.GT.0 )
192
     $      CALL DGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
193
     $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
194
*
195
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T'
196
*
197
         CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
198
     $               LDT, WORK, LDWORK )
199
*
200
*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
201
*
202
         DO 60 J = 1, K
203
            DO 50 I = 1, M
204
               C( I, J ) = C( I, J ) - WORK( I, J )
205
   50       CONTINUE
206
   60    CONTINUE
207
*
208
*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
209
*                            W( 1:m, 1:k ) * V( 1:k, 1:l )
210
*
211
         IF( L.GT.0 )
212
     $      CALL DGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
213
     $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
214
*
215
      END IF
216
*
217
      RETURN
218
*
219
*     End of DLARZB
220
*
221
      END