Statistiques
| Révision :

root / src / lapack / double / dlanst.f @ 2

Historique | Voir | Annoter | Télécharger (3,51 ko)

1
      DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
2
*
3
*  -- LAPACK auxiliary routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     November 2006
7
*
8
*     .. Scalar Arguments ..
9
      CHARACTER          NORM
10
      INTEGER            N
11
*     ..
12
*     .. Array Arguments ..
13
      DOUBLE PRECISION   D( * ), E( * )
14
*     ..
15
*
16
*  Purpose
17
*  =======
18
*
19
*  DLANST  returns the value of the one norm,  or the Frobenius norm, or
20
*  the  infinity norm,  or the  element of  largest absolute value  of a
21
*  real symmetric tridiagonal matrix A.
22
*
23
*  Description
24
*  ===========
25
*
26
*  DLANST returns the value
27
*
28
*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29
*              (
30
*              ( norm1(A),         NORM = '1', 'O' or 'o'
31
*              (
32
*              ( normI(A),         NORM = 'I' or 'i'
33
*              (
34
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
35
*
36
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
37
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
38
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
39
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
40
*
41
*  Arguments
42
*  =========
43
*
44
*  NORM    (input) CHARACTER*1
45
*          Specifies the value to be returned in DLANST as described
46
*          above.
47
*
48
*  N       (input) INTEGER
49
*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
50
*          set to zero.
51
*
52
*  D       (input) DOUBLE PRECISION array, dimension (N)
53
*          The diagonal elements of A.
54
*
55
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
56
*          The (n-1) sub-diagonal or super-diagonal elements of A.
57
*
58
*  =====================================================================
59
*
60
*     .. Parameters ..
61
      DOUBLE PRECISION   ONE, ZERO
62
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
63
*     ..
64
*     .. Local Scalars ..
65
      INTEGER            I
66
      DOUBLE PRECISION   ANORM, SCALE, SUM
67
*     ..
68
*     .. External Functions ..
69
      LOGICAL            LSAME
70
      EXTERNAL           LSAME
71
*     ..
72
*     .. External Subroutines ..
73
      EXTERNAL           DLASSQ
74
*     ..
75
*     .. Intrinsic Functions ..
76
      INTRINSIC          ABS, MAX, SQRT
77
*     ..
78
*     .. Executable Statements ..
79
*
80
      IF( N.LE.0 ) THEN
81
         ANORM = ZERO
82
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
83
*
84
*        Find max(abs(A(i,j))).
85
*
86
         ANORM = ABS( D( N ) )
87
         DO 10 I = 1, N - 1
88
            ANORM = MAX( ANORM, ABS( D( I ) ) )
89
            ANORM = MAX( ANORM, ABS( E( I ) ) )
90
   10    CONTINUE
91
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
92
     $         LSAME( NORM, 'I' ) ) THEN
93
*
94
*        Find norm1(A).
95
*
96
         IF( N.EQ.1 ) THEN
97
            ANORM = ABS( D( 1 ) )
98
         ELSE
99
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
100
     $              ABS( E( N-1 ) )+ABS( D( N ) ) )
101
            DO 20 I = 2, N - 1
102
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
103
     $                 ABS( E( I-1 ) ) )
104
   20       CONTINUE
105
         END IF
106
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
107
*
108
*        Find normF(A).
109
*
110
         SCALE = ZERO
111
         SUM = ONE
112
         IF( N.GT.1 ) THEN
113
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
114
            SUM = 2*SUM
115
         END IF
116
         CALL DLASSQ( N, D, 1, SCALE, SUM )
117
         ANORM = SCALE*SQRT( SUM )
118
      END IF
119
*
120
      DLANST = ANORM
121
      RETURN
122
*
123
*     End of DLANST
124
*
125
      END