Statistiques
| Révision :

root / src / lapack / double / dgeqp3.f @ 2

Historique | Voir | Annoter | Télécharger (8,3 ko)

1
      SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
2
*
3
*  -- LAPACK routine (version 3.2) --
4
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6
*     November 2006
7
*
8
*     .. Scalar Arguments ..
9
      INTEGER            INFO, LDA, LWORK, M, N
10
*     ..
11
*     .. Array Arguments ..
12
      INTEGER            JPVT( * )
13
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
14
*     ..
15
*
16
*  Purpose
17
*  =======
18
*
19
*  DGEQP3 computes a QR factorization with column pivoting of a
20
*  matrix A:  A*P = Q*R  using Level 3 BLAS.
21
*
22
*  Arguments
23
*  =========
24
*
25
*  M       (input) INTEGER
26
*          The number of rows of the matrix A. M >= 0.
27
*
28
*  N       (input) INTEGER
29
*          The number of columns of the matrix A.  N >= 0.
30
*
31
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
32
*          On entry, the M-by-N matrix A.
33
*          On exit, the upper triangle of the array contains the
34
*          min(M,N)-by-N upper trapezoidal matrix R; the elements below
35
*          the diagonal, together with the array TAU, represent the
36
*          orthogonal matrix Q as a product of min(M,N) elementary
37
*          reflectors.
38
*
39
*  LDA     (input) INTEGER
40
*          The leading dimension of the array A. LDA >= max(1,M).
41
*
42
*  JPVT    (input/output) INTEGER array, dimension (N)
43
*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
44
*          to the front of A*P (a leading column); if JPVT(J)=0,
45
*          the J-th column of A is a free column.
46
*          On exit, if JPVT(J)=K, then the J-th column of A*P was the
47
*          the K-th column of A.
48
*
49
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
50
*          The scalar factors of the elementary reflectors.
51
*
52
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
53
*          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
54
*
55
*  LWORK   (input) INTEGER
56
*          The dimension of the array WORK. LWORK >= 3*N+1.
57
*          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
58
*          is the optimal blocksize.
59
*
60
*          If LWORK = -1, then a workspace query is assumed; the routine
61
*          only calculates the optimal size of the WORK array, returns
62
*          this value as the first entry of the WORK array, and no error
63
*          message related to LWORK is issued by XERBLA.
64
*
65
*  INFO    (output) INTEGER
66
*          = 0: successful exit.
67
*          < 0: if INFO = -i, the i-th argument had an illegal value.
68
*
69
*  Further Details
70
*  ===============
71
*
72
*  The matrix Q is represented as a product of elementary reflectors
73
*
74
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
75
*
76
*  Each H(i) has the form
77
*
78
*     H(i) = I - tau * v * v'
79
*
80
*  where tau is a real/complex scalar, and v is a real/complex vector
81
*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
82
*  A(i+1:m,i), and tau in TAU(i).
83
*
84
*  Based on contributions by
85
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
86
*    X. Sun, Computer Science Dept., Duke University, USA
87
*
88
*  =====================================================================
89
*
90
*     .. Parameters ..
91
      INTEGER            INB, INBMIN, IXOVER
92
      PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
93
*     ..
94
*     .. Local Scalars ..
95
      LOGICAL            LQUERY
96
      INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
97
     $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
98
*     ..
99
*     .. External Subroutines ..
100
      EXTERNAL           DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA
101
*     ..
102
*     .. External Functions ..
103
      INTEGER            ILAENV
104
      DOUBLE PRECISION   DNRM2
105
      EXTERNAL           ILAENV, DNRM2
106
*     ..
107
*     .. Intrinsic Functions ..
108
      INTRINSIC          INT, MAX, MIN
109
*     ..
110
*     .. Executable Statements ..
111
*
112
*     Test input arguments
113
*     ====================
114
*
115
      INFO = 0
116
      LQUERY = ( LWORK.EQ.-1 )
117
      IF( M.LT.0 ) THEN
118
         INFO = -1
119
      ELSE IF( N.LT.0 ) THEN
120
         INFO = -2
121
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
122
         INFO = -4
123
      END IF
124
*
125
      IF( INFO.EQ.0 ) THEN
126
         MINMN = MIN( M, N )
127
         IF( MINMN.EQ.0 ) THEN
128
            IWS = 1
129
            LWKOPT = 1
130
         ELSE
131
            IWS = 3*N + 1
132
            NB = ILAENV( INB, 'DGEQRF', ' ', M, N, -1, -1 )
133
            LWKOPT = 2*N + ( N + 1 )*NB
134
         END IF
135
         WORK( 1 ) = LWKOPT
136
*
137
         IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
138
            INFO = -8
139
         END IF
140
      END IF
141
*
142
      IF( INFO.NE.0 ) THEN
143
         CALL XERBLA( 'DGEQP3', -INFO )
144
         RETURN
145
      ELSE IF( LQUERY ) THEN
146
         RETURN
147
      END IF
148
*
149
*     Quick return if possible.
150
*
151
      IF( MINMN.EQ.0 ) THEN
152
         RETURN
153
      END IF
154
*
155
*     Move initial columns up front.
156
*
157
      NFXD = 1
158
      DO 10 J = 1, N
159
         IF( JPVT( J ).NE.0 ) THEN
160
            IF( J.NE.NFXD ) THEN
161
               CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
162
               JPVT( J ) = JPVT( NFXD )
163
               JPVT( NFXD ) = J
164
            ELSE
165
               JPVT( J ) = J
166
            END IF
167
            NFXD = NFXD + 1
168
         ELSE
169
            JPVT( J ) = J
170
         END IF
171
   10 CONTINUE
172
      NFXD = NFXD - 1
173
*
174
*     Factorize fixed columns
175
*     =======================
176
*
177
*     Compute the QR factorization of fixed columns and update
178
*     remaining columns.
179
*
180
      IF( NFXD.GT.0 ) THEN
181
         NA = MIN( M, NFXD )
182
*CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
183
         CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
184
         IWS = MAX( IWS, INT( WORK( 1 ) ) )
185
         IF( NA.LT.N ) THEN
186
*CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
187
*CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO )
188
            CALL DORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU,
189
     $                   A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
190
            IWS = MAX( IWS, INT( WORK( 1 ) ) )
191
         END IF
192
      END IF
193
*
194
*     Factorize free columns
195
*     ======================
196
*
197
      IF( NFXD.LT.MINMN ) THEN
198
*
199
         SM = M - NFXD
200
         SN = N - NFXD
201
         SMINMN = MINMN - NFXD
202
*
203
*        Determine the block size.
204
*
205
         NB = ILAENV( INB, 'DGEQRF', ' ', SM, SN, -1, -1 )
206
         NBMIN = 2
207
         NX = 0
208
*
209
         IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
210
*
211
*           Determine when to cross over from blocked to unblocked code.
212
*
213
            NX = MAX( 0, ILAENV( IXOVER, 'DGEQRF', ' ', SM, SN, -1,
214
     $           -1 ) )
215
*
216
*
217
            IF( NX.LT.SMINMN ) THEN
218
*
219
*              Determine if workspace is large enough for blocked code.
220
*
221
               MINWS = 2*SN + ( SN+1 )*NB
222
               IWS = MAX( IWS, MINWS )
223
               IF( LWORK.LT.MINWS ) THEN
224
*
225
*                 Not enough workspace to use optimal NB: Reduce NB and
226
*                 determine the minimum value of NB.
227
*
228
                  NB = ( LWORK-2*SN ) / ( SN+1 )
229
                  NBMIN = MAX( 2, ILAENV( INBMIN, 'DGEQRF', ' ', SM, SN,
230
     $                    -1, -1 ) )
231
*
232
*
233
               END IF
234
            END IF
235
         END IF
236
*
237
*        Initialize partial column norms. The first N elements of work
238
*        store the exact column norms.
239
*
240
         DO 20 J = NFXD + 1, N
241
            WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 )
242
            WORK( N+J ) = WORK( J )
243
   20    CONTINUE
244
*
245
         IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
246
     $       ( NX.LT.SMINMN ) ) THEN
247
*
248
*           Use blocked code initially.
249
*
250
            J = NFXD + 1
251
*
252
*           Compute factorization: while loop.
253
*
254
*
255
            TOPBMN = MINMN - NX
256
   30       CONTINUE
257
            IF( J.LE.TOPBMN ) THEN
258
               JB = MIN( NB, TOPBMN-J+1 )
259
*
260
*              Factorize JB columns among columns J:N.
261
*
262
               CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
263
     $                      JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
264
     $                      WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
265
*
266
               J = J + FJB
267
               GO TO 30
268
            END IF
269
         ELSE
270
            J = NFXD + 1
271
         END IF
272
*
273
*        Use unblocked code to factor the last or only block.
274
*
275
*
276
         IF( J.LE.MINMN )
277
     $      CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
278
     $                   TAU( J ), WORK( J ), WORK( N+J ),
279
     $                   WORK( 2*N+1 ) )
280
*
281
      END IF
282
*
283
      WORK( 1 ) = IWS
284
      RETURN
285
*
286
*     End of DGEQP3
287
*
288
      END