root / src / Step_GEDIIS.f90 @ 2
Historique | Voir | Annoter | Télécharger (15,13 ko)
1 |
! Geom = input parameter vector (Geometry), Grad = input gradient vector. |
---|---|
2 |
! HEAT is Energy(Geom) |
3 |
SUBROUTINE Step_GEDIIS(Geom_new,Geom,Grad,HEAT,Hess,NCoord,FRST) |
4 |
|
5 |
use Io_module |
6 |
use Path_module, only : Nom, Atome, OrderInv, indzmat, Pi, Nat |
7 |
|
8 |
IMPLICIT NONE |
9 |
|
10 |
INTEGER(KINT) :: NCoord |
11 |
REAL(KREAL) :: Geom_new(NCoord), Grad(NCoord), Hess(NCoord*NCoord) |
12 |
REAL(KREAL), INTENT(IN) :: Geom(NCoord) |
13 |
REAL(KREAL) :: HEAT ! HEAT= Energy |
14 |
LOGICAL :: FRST |
15 |
|
16 |
! MRESET = maximum number of iterations. |
17 |
INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
18 |
REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:), GradSet(:) ! MRESET*NCoord |
19 |
REAL(KREAL), ALLOCATABLE, SAVE :: DX(:), GSAVE(:) !NCoord |
20 |
REAL(KREAL), SAVE :: ESET(MRESET) |
21 |
REAL(KREAL) :: ESET_tmp(MRESET), B(M2),BS(M2),BST(M2), B_tmp(M2) ! M2=256 |
22 |
LOGICAL DEBUG, PRINT, ci_lt_zero |
23 |
INTEGER(KINT), SAVE :: MSET ! mth Iteration |
24 |
REAL(KREAL) :: ci(MRESET), ci_tmp(MRESET) ! MRESET = maximum number of iterations. |
25 |
INTEGER(KINT) :: NGEDIIS, MPLUS, INV, ITERA, MM, cis_zero, IXX, JXX, MSET_minus_cis_zero |
26 |
INTEGER(KINT) :: I,J,K, JJ, KJ, JNV, II, IONE, IJ, INK,ITmp, IX, JX, KX, MSET_C_cis_zero |
27 |
INTEGER(KINT) :: current_size_B_mat, MyPointer, Iat |
28 |
REAL(KREAL) :: XMax, XNorm, S, DET, THRES, tmp, ER_star, ER_star_tmp |
29 |
|
30 |
DEBUG=.TRUE. |
31 |
PRINT=.FALSE. |
32 |
|
33 |
IF (PRINT) WRITE(*,'(/,'' BEGIN GEDIIS '')') |
34 |
|
35 |
! Initialization |
36 |
IF (FRST) THEN |
37 |
! FRST will be set to False in SPACE_GEDIIS, so no need to modify it here |
38 |
IF (ALLOCATED(GeomSet)) THEN |
39 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GEDIIS Dealloc '')') |
40 |
DEALLOCATE(GeomSet,GradSet,DX,GSave) |
41 |
RETURN |
42 |
ELSE |
43 |
IF (PRINT) WRITE(*,'(/,'' In FRST, GEDIIS Alloc '')') |
44 |
ALLOCATE(GeomSet(MRESET*NCoord),GradSet(MRESET*NCoord),DX(NCoord),GSAVE(NCoord)) |
45 |
END IF |
46 |
END IF ! IF (FRST) THEN |
47 |
|
48 |
! SPACE_GEDIIS SIMPLY LOADS THE CURRENT VALUES OF Geom AND Grad INTO THE ARRAYS GeomSet |
49 |
! AND GradSet, MSET is set to zero and then 1 in SPACE_GEDIIS at first iteration. |
50 |
CALL SPACE_GEDIIS(MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST) |
51 |
|
52 |
IF (PRINT) WRITE(*,'(/,'' GEDIIS after SPACE_GEDIIS '')') |
53 |
|
54 |
! INITIALIZE SOME VARIABLES AND CONSTANTS: |
55 |
NGEDIIS = MSET !MSET=mth iteration |
56 |
MPLUS = MSET + 1 |
57 |
MM = MPLUS * MPLUS |
58 |
|
59 |
! CONSTRUCT THE GEDIIS MATRIX: |
60 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)> |
61 |
JJ=0 |
62 |
INV=-NCoord |
63 |
DO I=1,MSET |
64 |
INV=INV+NCoord |
65 |
JNV=-NCoord |
66 |
DO J=1,MSET |
67 |
JNV=JNV+NCoord |
68 |
JJ = JJ + 1 |
69 |
B(JJ)=0.D0 |
70 |
DO K=1, NCoord |
71 |
B(JJ) = B(JJ) + (((GradSet(INV+K)-GradSet(JNV+K))*(GeomSet(INV+K)-GeomSet(JNV+K)))/2.D0) |
72 |
END DO |
73 |
END DO |
74 |
END DO |
75 |
|
76 |
! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
77 |
! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
78 |
DO I=MSET-1,1,-1 |
79 |
DO J=MSET,1,-1 |
80 |
B(I*MSET+J+I) = B(I*MSET+J) |
81 |
END DO |
82 |
END DO |
83 |
|
84 |
! for last row and last column of GEDIIS matrix |
85 |
DO I=1,MPLUS |
86 |
B(MPLUS*I) = 1.D0 |
87 |
B(MPLUS*MSET+I) = 1.D0 |
88 |
END DO |
89 |
B(MM) = 0.D0 |
90 |
|
91 |
DO I=1, MPLUS |
92 |
!WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
93 |
END DO |
94 |
|
95 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
96 |
80 CONTINUE |
97 |
DO I=1,MM !MM = (MSET+1) * (MSET+1) |
98 |
BS(I) = B(I) !just a copy of the original B (GEDIIS) matrix |
99 |
END DO |
100 |
|
101 |
IF (NGEDIIS .NE. MSET) THEN |
102 |
DO II=1,MSET-NGEDIIS |
103 |
XMAX = -1.D10 |
104 |
ITERA = 0 |
105 |
DO I=1,MSET |
106 |
XNORM = 0.D0 |
107 |
INV = (I-1) * MPLUS |
108 |
DO J=1,MSET |
109 |
XNORM = XNORM + ABS(B(INV + J)) |
110 |
END DO |
111 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
112 |
XMAX = XNORM |
113 |
ITERA = I |
114 |
IONE = INV + I |
115 |
ENDIF |
116 |
END DO |
117 |
|
118 |
DO I=1,MPLUS |
119 |
INV = (I-1) * MPLUS |
120 |
DO J=1,MPLUS |
121 |
JNV = (J-1) * MPLUS |
122 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
123 |
B(JNV + I) = B(INV + J) |
124 |
END DO |
125 |
END DO |
126 |
B(IONE) = 1.0D0 |
127 |
END DO |
128 |
END IF ! matches IF (NGEDIIS .NE. MSET) THEN |
129 |
|
130 |
! SCALE GEDIIS MATRIX BEFORE INVERSION: |
131 |
DO I=1,MPLUS |
132 |
II = MPLUS * (I-1) + I ! B(II)=diagonal elements of B matrix |
133 |
GSAVE(I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
134 |
!Print *, 'GSAVE(',I,')=', GSAVE(I) |
135 |
END DO |
136 |
GSAVE(MPLUS) = 1.D0 |
137 |
DO I=1,MPLUS |
138 |
DO J=1,MPLUS |
139 |
IJ = MPLUS * (I-1) + J |
140 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
141 |
END DO |
142 |
END DO |
143 |
|
144 |
! INVERT THE GEDIIS MATRIX B: |
145 |
DO I=1, MPLUS |
146 |
!WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
147 |
END DO |
148 |
|
149 |
CALL MINV(B,MPLUS,DET) ! matrix inversion. |
150 |
|
151 |
DO I=1, MPLUS |
152 |
!WRITE(*,'(10(1X,F20.16))') B((I-1)*MPLUS+1:I*(MPLUS)) |
153 |
END DO |
154 |
|
155 |
DO I=1,MPLUS |
156 |
DO J=1,MPLUS |
157 |
IJ = MPLUS * (I-1) + J |
158 |
B(IJ) = B(IJ) * GSAVE(I) * GSAVE(J) |
159 |
END DO |
160 |
END DO |
161 |
|
162 |
! COMPUTE THE NEW INTERPOLATED PARAMETER VECTOR (Geometry): |
163 |
ci=0.d0 |
164 |
ci_tmp=0.d0 |
165 |
|
166 |
ci_lt_zero= .FALSE. |
167 |
DO I=1, MSET |
168 |
DO J=1, MSET ! B matrix is read column-wise |
169 |
ci(I)=ci(I)+B((J-1)*(MPLUS)+I)*ESET(J) !ESET is energy set, yet to be fixed. |
170 |
END DO |
171 |
ci(I)=ci(I)+B((MPLUS-1)*(MPLUS)+I) |
172 |
!Print *, 'NO ci < 0 yet, c(',I,')=', ci(I) |
173 |
IF((ci(I) .LT. 0.0D0) .OR. (ci(I) .GT. 1.0D0)) THEN |
174 |
ci_lt_zero=.TRUE. |
175 |
EXIT |
176 |
END IF |
177 |
END DO !matches DO I=1, MSET |
178 |
|
179 |
IF (ci_lt_zero) Then |
180 |
cis_zero = 0 |
181 |
ER_star = 0.D0 |
182 |
ER_star_tmp = 1e32 |
183 |
|
184 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
185 |
JJ=0 |
186 |
INV=-NCoord |
187 |
DO IX=1,MSET |
188 |
INV=INV+NCoord |
189 |
JNV=-NCoord |
190 |
DO JX=1,MSET |
191 |
JNV=JNV+NCoord |
192 |
JJ = JJ + 1 |
193 |
BST(JJ)=0.D0 |
194 |
DO KX=1, NCoord |
195 |
BST(JJ) = BST(JJ) + (((GradSet(INV+KX)-GradSet(JNV+KX))*(GeomSet(INV+KX)-GeomSet(JNV+KX)))/2.D0) |
196 |
END DO |
197 |
END DO |
198 |
END DO |
199 |
|
200 |
DO I=1, (2**MSET)-2 ! all (2**MSET)-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
201 |
ci(:)=1.D0 |
202 |
! find out which cis are zero in I: |
203 |
DO IX=1, MSET |
204 |
JJ=IAND(I, 2**(IX-1)) |
205 |
IF(JJ .EQ. 0) Then |
206 |
ci(IX)=0.D0 |
207 |
END IF |
208 |
END DO |
209 |
|
210 |
ci_lt_zero = .FALSE. |
211 |
! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
212 |
DO IX=1, MSET*MSET |
213 |
B(IX) = BST(IX) !just a copy of the original B (GEDIIS) matrix |
214 |
END DO |
215 |
|
216 |
! Removal of KXth row and KXth column in order to accomodate cI to be zero: |
217 |
current_size_B_mat=MSET |
218 |
cis_zero = 0 |
219 |
! The bits of I (index of the upper loop 'DO I=1, (2**MSET)-2'), gives which cis are zero. |
220 |
DO KX=1, MSET ! searching for each bit of I (index of the upper loop 'DO I=1, (2**MSET)-2') |
221 |
IF (ci(KX) .EQ. 0.D0) Then !remove KXth row and KXth column |
222 |
cis_zero = cis_zero + 1 |
223 |
|
224 |
! First row removal: (B matrix is read column-wise) |
225 |
JJ=0 |
226 |
DO IX=1,current_size_B_mat ! columns reading |
227 |
DO JX=1,current_size_B_mat ! rows reading |
228 |
IF (JX .NE. KX) Then |
229 |
JJ = JJ + 1 |
230 |
B_tmp(JJ) = B((IX-1)*current_size_B_mat+JX) |
231 |
END IF |
232 |
END DO |
233 |
END DO |
234 |
|
235 |
DO IX=1,current_size_B_mat*(current_size_B_mat-1) |
236 |
B(IX) = B_tmp(IX) |
237 |
END DO |
238 |
|
239 |
! Now column removal: |
240 |
JJ=0 |
241 |
DO IX=1,KX-1 ! columns reading |
242 |
DO JX=1,current_size_B_mat-1 ! rows reading |
243 |
JJ = JJ + 1 |
244 |
B_tmp(JJ) = B(JJ) |
245 |
END DO |
246 |
END DO |
247 |
|
248 |
DO IX=KX+1,current_size_B_mat |
249 |
DO JX=1,current_size_B_mat-1 |
250 |
JJ = JJ + 1 |
251 |
B_tmp(JJ) = B(JJ+current_size_B_mat-1) |
252 |
END DO |
253 |
END DO |
254 |
|
255 |
DO IX=1,(current_size_B_mat-1)*(current_size_B_mat-1) |
256 |
B(IX) = B_tmp(IX) |
257 |
END DO |
258 |
current_size_B_mat = current_size_B_mat - 1 |
259 |
END IF ! matches IF (ci(KX) .EQ. 0.D0) Then !remove |
260 |
END DO ! matches DO KX=1, MSET |
261 |
|
262 |
! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
263 |
! The correction is needed because the last coloumn and row of the matrix contains all 1 and one zero. |
264 |
DO IX=MSET-cis_zero-1,1,-1 |
265 |
DO JX=MSET-cis_zero,1,-1 |
266 |
B(IX*(MSET-cis_zero)+JX+IX) = B(IX*(MSET-cis_zero)+JX) |
267 |
END DO |
268 |
END DO |
269 |
|
270 |
! for last row and last column of GEDIIS matrix |
271 |
DO IX=1,MPLUS-cis_zero |
272 |
B((MPLUS-cis_zero)*IX) = 1.D0 |
273 |
B((MPLUS-cis_zero)*(MSET-cis_zero)+IX) = 1.D0 |
274 |
END DO |
275 |
B((MPLUS-cis_zero) * (MPLUS-cis_zero)) = 0.D0 |
276 |
|
277 |
DO IX=1, MPLUS |
278 |
!WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
279 |
END DO |
280 |
|
281 |
! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
282 |
IF (NGEDIIS .NE. MSET) THEN |
283 |
JX = min(MSET-NGEDIIS,MSET-cis_zero-1) |
284 |
DO II=1,JX |
285 |
XMAX = -1.D10 |
286 |
ITERA = 0 |
287 |
DO IX=1,MSET-cis_zero |
288 |
XNORM = 0.D0 |
289 |
INV = (IX-1) * (MPLUS-cis_zero) |
290 |
DO J=1,MSET-cis_zero |
291 |
XNORM = XNORM + ABS(B(INV + J)) |
292 |
END DO |
293 |
IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
294 |
XMAX = XNORM |
295 |
ITERA = IX |
296 |
IONE = INV + IX |
297 |
ENDIF |
298 |
END DO |
299 |
|
300 |
DO IX=1,MPLUS-cis_zero |
301 |
INV = (IX-1) * (MPLUS-cis_zero) |
302 |
DO J=1,MPLUS-cis_zero |
303 |
JNV = (J-1) * (MPLUS-cis_zero) |
304 |
IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
305 |
B(JNV + IX) = B(INV + J) |
306 |
END DO |
307 |
END DO |
308 |
B(IONE) = 1.0D0 |
309 |
END DO |
310 |
END IF ! matches IF (NGEDIIS .NE. MSET) THEN |
311 |
|
312 |
! SCALE GEDIIS MATRIX BEFORE INVERSION: |
313 |
DO IX=1,MPLUS-cis_zero |
314 |
II = (MPLUS-cis_zero) * (IX-1) + IX ! B(II)=diagonal elements of B matrix |
315 |
GSAVE(IX) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
316 |
END DO |
317 |
GSAVE(MPLUS-cis_zero) = 1.D0 |
318 |
DO IX=1,MPLUS-cis_zero |
319 |
DO JX=1,MPLUS-cis_zero |
320 |
IJ = (MPLUS-cis_zero) * (IX-1) + JX |
321 |
B(IJ) = B(IJ) * GSAVE(IX) * GSAVE(JX) |
322 |
END DO |
323 |
END DO |
324 |
|
325 |
! INVERT THE GEDIIS MATRIX B: |
326 |
CALL MINV(B,MPLUS-cis_zero,DET) ! matrix inversion. |
327 |
|
328 |
DO IX=1,MPLUS-cis_zero |
329 |
DO JX=1,MPLUS-cis_zero |
330 |
IJ = (MPLUS-cis_zero) * (IX-1) + JX |
331 |
B(IJ) = B(IJ) * GSAVE(IX) * GSAVE(JX) |
332 |
END DO |
333 |
END DO |
334 |
|
335 |
DO IX=1, MPLUS |
336 |
!WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
337 |
END DO |
338 |
|
339 |
! ESET is rearranged to handle zero cis and stored in ESET_tmp: |
340 |
JJ=0 |
341 |
DO IX=1, MSET |
342 |
IF (ci(IX) .NE. 0) Then |
343 |
JJ=JJ+1 |
344 |
ESET_tmp(JJ) = ESET(IX) |
345 |
END IF |
346 |
END DO |
347 |
|
348 |
! DETERMINATION OF nonzero cis: |
349 |
MyPointer=1 |
350 |
DO IX=1, MSET-cis_zero |
351 |
tmp = 0.D0 |
352 |
DO J=1, MSET-cis_zero ! B matrix is read column-wise |
353 |
tmp=tmp+B((J-1)*(MPLUS-cis_zero)+IX)*ESET_tmp(J) |
354 |
END DO |
355 |
tmp=tmp+B((MPLUS-cis_zero-1)*(MPLUS-cis_zero)+IX) |
356 |
IF((tmp .LT. 0.0D0) .OR. (tmp .GT. 1.0D0)) THEN |
357 |
ci_lt_zero=.TRUE. |
358 |
EXIT |
359 |
ELSE |
360 |
DO JX=MyPointer,MSET |
361 |
IF (ci(JX) .NE. 0) Then |
362 |
ci(JX) = tmp |
363 |
MyPointer=JX+1 |
364 |
EXIT |
365 |
END IF |
366 |
END DO |
367 |
END IF |
368 |
END DO !matches DO I=1, MSET-cis_zero |
369 |
!Print *, 'Local set of cis, first 10:, MSET=', MSET, ', I of (2**MSET)-2=', I |
370 |
!WRITE(*,'(10(1X,F20.4))') ci(1:MSET) |
371 |
!Print *, 'Local set of cis ends:****************************************' |
372 |
|
373 |
! new set of cis determined based on the lower energy (ER_star): |
374 |
IF (.NOT. ci_lt_zero) Then |
375 |
Call Energy_GEDIIS(MRESET,MSET,ci,GeomSet,GradSet,ESET,NCoord,ER_star) |
376 |
IF (ER_star .LT. ER_star_tmp) Then |
377 |
ci_tmp=ci |
378 |
ER_star_tmp = ER_star |
379 |
END IF |
380 |
END IF ! matches IF (.NOT. ci_lt_zero) Then |
381 |
END DO !matches DO I=1, (2**K)-2 ! all (2**K)-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
382 |
ci = ci_tmp |
383 |
END IF! matches IF (ci_lt_zero) Then |
384 |
|
385 |
Print *, 'Final set of cis, first 10:***********************************' |
386 |
WRITE(*,'(10(1X,F20.4))') ci(1:MSET) |
387 |
Print *, 'Final set of cis ends:****************************************' |
388 |
Geom_new(:) = 0.D0 |
389 |
DO I=1, MSET |
390 |
Geom_new(:) = Geom_new(:) + (ci(I)*GeomSet((I-1)*NCoord+1:I*NCoord)) !MPLUS=MSET+1 |
391 |
! R_(N+1)=R*+DeltaR: |
392 |
DO J=1, NCoord |
393 |
tmp=0.D0 |
394 |
DO K=1,NCoord |
395 |
!tmp=tmp+Hess((J-1)*NCoord+K)*GradSet((I-1)*NCoord+K) ! If Hinv=.False., then we need to invert Hess |
396 |
END DO |
397 |
Geom_new(J) = Geom_new(J) - (ci(I)*tmp) |
398 |
END DO |
399 |
END DO |
400 |
|
401 |
DX(:) = Geom(:) - Geom_new(:) |
402 |
|
403 |
XNORM = SQRT(DOT_PRODUCT(DX,DX)) |
404 |
IF (PRINT) THEN |
405 |
WRITE (6,'(/10X,''DEVIATION IN X '',F10.4,8X,''DETERMINANT '',G9.3)') XNORM, DET |
406 |
!WRITE(*,'(10X,''GEDIIS COEFFICIENTS'')') |
407 |
!WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET+I),I=1,MSET) |
408 |
ENDIF |
409 |
|
410 |
! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
411 |
THRES = MAX(10.D0**(-NCoord), 1.D-25) |
412 |
IF (XNORM.GT.2.D0 .OR. DABS(DET) .LT. THRES) THEN |
413 |
IF (PRINT)THEN |
414 |
WRITE(*,*) "THE GEDIIS MATRIX IS ILL CONDITIONED" |
415 |
WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
416 |
WRITE(*,*) "THE GEDIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
417 |
END IF |
418 |
DO K=1,MM |
419 |
B(K) = BS(K) ! why this is reverted? Because "IF (NGEDIIS .GT. 0) GO TO 80", see below |
420 |
END DO |
421 |
NGEDIIS = NGEDIIS - 1 |
422 |
IF (NGEDIIS .GT. 0) GO TO 80 |
423 |
IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
424 |
Geom_new(:) = Geom(:) ! Geom_new is set to original Geom, thus DX = Geom(:) - Geom_new(:)=zero |
425 |
END IF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
426 |
|
427 |
!******************************************************************************************************************* |
428 |
Geom_new(:) = 0.D0 |
429 |
DO I=1, MSET |
430 |
Geom_new(:) = Geom_new(:) + (ci(I)*GeomSet((I-1)*NCoord+1:I*NCoord)) !MPLUS=MSET+1 |
431 |
! R_(N+1)=R*+DeltaR: |
432 |
DO J=1, NCoord |
433 |
tmp=0.D0 |
434 |
DO K=1,NCoord |
435 |
tmp=tmp+Hess((J-1)*NCoord+K)*GradSet((I-1)*NCoord+K) ! If Hinv=.False., then we need to invert Hess |
436 |
END DO |
437 |
Geom_new(J) = Geom_new(J) - (ci(I)*tmp) |
438 |
END DO |
439 |
END DO |
440 |
!******************************************************************************************************************* |
441 |
|
442 |
IF (PRINT) WRITE(*,'(/,'' END GEDIIS '',/)') |
443 |
|
444 |
END SUBROUTINE Step_GEDIIS |
445 |
|