root / src / lapack / double / dtzrzf.f @ 2
Historique | Voir | Annoter | Télécharger (7,11 ko)
1 | 1 | equemene | SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) |
---|---|---|---|
2 | 1 | equemene | * |
3 | 1 | equemene | * -- LAPACK routine (version 3.2) -- |
4 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 | 1 | equemene | * November 2006 |
7 | 1 | equemene | * |
8 | 1 | equemene | * .. Scalar Arguments .. |
9 | 1 | equemene | INTEGER INFO, LDA, LWORK, M, N |
10 | 1 | equemene | * .. |
11 | 1 | equemene | * .. Array Arguments .. |
12 | 1 | equemene | DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) |
13 | 1 | equemene | * .. |
14 | 1 | equemene | * |
15 | 1 | equemene | * Purpose |
16 | 1 | equemene | * ======= |
17 | 1 | equemene | * |
18 | 1 | equemene | * DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A |
19 | 1 | equemene | * to upper triangular form by means of orthogonal transformations. |
20 | 1 | equemene | * |
21 | 1 | equemene | * The upper trapezoidal matrix A is factored as |
22 | 1 | equemene | * |
23 | 1 | equemene | * A = ( R 0 ) * Z, |
24 | 1 | equemene | * |
25 | 1 | equemene | * where Z is an N-by-N orthogonal matrix and R is an M-by-M upper |
26 | 1 | equemene | * triangular matrix. |
27 | 1 | equemene | * |
28 | 1 | equemene | * Arguments |
29 | 1 | equemene | * ========= |
30 | 1 | equemene | * |
31 | 1 | equemene | * M (input) INTEGER |
32 | 1 | equemene | * The number of rows of the matrix A. M >= 0. |
33 | 1 | equemene | * |
34 | 1 | equemene | * N (input) INTEGER |
35 | 1 | equemene | * The number of columns of the matrix A. N >= M. |
36 | 1 | equemene | * |
37 | 1 | equemene | * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
38 | 1 | equemene | * On entry, the leading M-by-N upper trapezoidal part of the |
39 | 1 | equemene | * array A must contain the matrix to be factorized. |
40 | 1 | equemene | * On exit, the leading M-by-M upper triangular part of A |
41 | 1 | equemene | * contains the upper triangular matrix R, and elements M+1 to |
42 | 1 | equemene | * N of the first M rows of A, with the array TAU, represent the |
43 | 1 | equemene | * orthogonal matrix Z as a product of M elementary reflectors. |
44 | 1 | equemene | * |
45 | 1 | equemene | * LDA (input) INTEGER |
46 | 1 | equemene | * The leading dimension of the array A. LDA >= max(1,M). |
47 | 1 | equemene | * |
48 | 1 | equemene | * TAU (output) DOUBLE PRECISION array, dimension (M) |
49 | 1 | equemene | * The scalar factors of the elementary reflectors. |
50 | 1 | equemene | * |
51 | 1 | equemene | * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) |
52 | 1 | equemene | * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. |
53 | 1 | equemene | * |
54 | 1 | equemene | * LWORK (input) INTEGER |
55 | 1 | equemene | * The dimension of the array WORK. LWORK >= max(1,M). |
56 | 1 | equemene | * For optimum performance LWORK >= M*NB, where NB is |
57 | 1 | equemene | * the optimal blocksize. |
58 | 1 | equemene | * |
59 | 1 | equemene | * If LWORK = -1, then a workspace query is assumed; the routine |
60 | 1 | equemene | * only calculates the optimal size of the WORK array, returns |
61 | 1 | equemene | * this value as the first entry of the WORK array, and no error |
62 | 1 | equemene | * message related to LWORK is issued by XERBLA. |
63 | 1 | equemene | * |
64 | 1 | equemene | * INFO (output) INTEGER |
65 | 1 | equemene | * = 0: successful exit |
66 | 1 | equemene | * < 0: if INFO = -i, the i-th argument had an illegal value |
67 | 1 | equemene | * |
68 | 1 | equemene | * Further Details |
69 | 1 | equemene | * =============== |
70 | 1 | equemene | * |
71 | 1 | equemene | * Based on contributions by |
72 | 1 | equemene | * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA |
73 | 1 | equemene | * |
74 | 1 | equemene | * The factorization is obtained by Householder's method. The kth |
75 | 1 | equemene | * transformation matrix, Z( k ), which is used to introduce zeros into |
76 | 1 | equemene | * the ( m - k + 1 )th row of A, is given in the form |
77 | 1 | equemene | * |
78 | 1 | equemene | * Z( k ) = ( I 0 ), |
79 | 1 | equemene | * ( 0 T( k ) ) |
80 | 1 | equemene | * |
81 | 1 | equemene | * where |
82 | 1 | equemene | * |
83 | 1 | equemene | * T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), |
84 | 1 | equemene | * ( 0 ) |
85 | 1 | equemene | * ( z( k ) ) |
86 | 1 | equemene | * |
87 | 1 | equemene | * tau is a scalar and z( k ) is an ( n - m ) element vector. |
88 | 1 | equemene | * tau and z( k ) are chosen to annihilate the elements of the kth row |
89 | 1 | equemene | * of X. |
90 | 1 | equemene | * |
91 | 1 | equemene | * The scalar tau is returned in the kth element of TAU and the vector |
92 | 1 | equemene | * u( k ) in the kth row of A, such that the elements of z( k ) are |
93 | 1 | equemene | * in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in |
94 | 1 | equemene | * the upper triangular part of A. |
95 | 1 | equemene | * |
96 | 1 | equemene | * Z is given by |
97 | 1 | equemene | * |
98 | 1 | equemene | * Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). |
99 | 1 | equemene | * |
100 | 1 | equemene | * ===================================================================== |
101 | 1 | equemene | * |
102 | 1 | equemene | * .. Parameters .. |
103 | 1 | equemene | DOUBLE PRECISION ZERO |
104 | 1 | equemene | PARAMETER ( ZERO = 0.0D+0 ) |
105 | 1 | equemene | * .. |
106 | 1 | equemene | * .. Local Scalars .. |
107 | 1 | equemene | LOGICAL LQUERY |
108 | 1 | equemene | INTEGER I, IB, IWS, KI, KK, LDWORK, LWKOPT, M1, MU, NB, |
109 | 1 | equemene | $ NBMIN, NX |
110 | 1 | equemene | * .. |
111 | 1 | equemene | * .. External Subroutines .. |
112 | 1 | equemene | EXTERNAL DLARZB, DLARZT, DLATRZ, XERBLA |
113 | 1 | equemene | * .. |
114 | 1 | equemene | * .. Intrinsic Functions .. |
115 | 1 | equemene | INTRINSIC MAX, MIN |
116 | 1 | equemene | * .. |
117 | 1 | equemene | * .. External Functions .. |
118 | 1 | equemene | INTEGER ILAENV |
119 | 1 | equemene | EXTERNAL ILAENV |
120 | 1 | equemene | * .. |
121 | 1 | equemene | * .. Executable Statements .. |
122 | 1 | equemene | * |
123 | 1 | equemene | * Test the input arguments |
124 | 1 | equemene | * |
125 | 1 | equemene | INFO = 0 |
126 | 1 | equemene | LQUERY = ( LWORK.EQ.-1 ) |
127 | 1 | equemene | IF( M.LT.0 ) THEN |
128 | 1 | equemene | INFO = -1 |
129 | 1 | equemene | ELSE IF( N.LT.M ) THEN |
130 | 1 | equemene | INFO = -2 |
131 | 1 | equemene | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN |
132 | 1 | equemene | INFO = -4 |
133 | 1 | equemene | END IF |
134 | 1 | equemene | * |
135 | 1 | equemene | IF( INFO.EQ.0 ) THEN |
136 | 1 | equemene | IF( M.EQ.0 .OR. M.EQ.N ) THEN |
137 | 1 | equemene | LWKOPT = 1 |
138 | 1 | equemene | ELSE |
139 | 1 | equemene | * |
140 | 1 | equemene | * Determine the block size. |
141 | 1 | equemene | * |
142 | 1 | equemene | NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 ) |
143 | 1 | equemene | LWKOPT = M*NB |
144 | 1 | equemene | END IF |
145 | 1 | equemene | WORK( 1 ) = LWKOPT |
146 | 1 | equemene | * |
147 | 1 | equemene | IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN |
148 | 1 | equemene | INFO = -7 |
149 | 1 | equemene | END IF |
150 | 1 | equemene | END IF |
151 | 1 | equemene | * |
152 | 1 | equemene | IF( INFO.NE.0 ) THEN |
153 | 1 | equemene | CALL XERBLA( 'DTZRZF', -INFO ) |
154 | 1 | equemene | RETURN |
155 | 1 | equemene | ELSE IF( LQUERY ) THEN |
156 | 1 | equemene | RETURN |
157 | 1 | equemene | END IF |
158 | 1 | equemene | * |
159 | 1 | equemene | * Quick return if possible |
160 | 1 | equemene | * |
161 | 1 | equemene | IF( M.EQ.0 ) THEN |
162 | 1 | equemene | RETURN |
163 | 1 | equemene | ELSE IF( M.EQ.N ) THEN |
164 | 1 | equemene | DO 10 I = 1, N |
165 | 1 | equemene | TAU( I ) = ZERO |
166 | 1 | equemene | 10 CONTINUE |
167 | 1 | equemene | RETURN |
168 | 1 | equemene | END IF |
169 | 1 | equemene | * |
170 | 1 | equemene | NBMIN = 2 |
171 | 1 | equemene | NX = 1 |
172 | 1 | equemene | IWS = M |
173 | 1 | equemene | IF( NB.GT.1 .AND. NB.LT.M ) THEN |
174 | 1 | equemene | * |
175 | 1 | equemene | * Determine when to cross over from blocked to unblocked code. |
176 | 1 | equemene | * |
177 | 1 | equemene | NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) ) |
178 | 1 | equemene | IF( NX.LT.M ) THEN |
179 | 1 | equemene | * |
180 | 1 | equemene | * Determine if workspace is large enough for blocked code. |
181 | 1 | equemene | * |
182 | 1 | equemene | LDWORK = M |
183 | 1 | equemene | IWS = LDWORK*NB |
184 | 1 | equemene | IF( LWORK.LT.IWS ) THEN |
185 | 1 | equemene | * |
186 | 1 | equemene | * Not enough workspace to use optimal NB: reduce NB and |
187 | 1 | equemene | * determine the minimum value of NB. |
188 | 1 | equemene | * |
189 | 1 | equemene | NB = LWORK / LDWORK |
190 | 1 | equemene | NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1, |
191 | 1 | equemene | $ -1 ) ) |
192 | 1 | equemene | END IF |
193 | 1 | equemene | END IF |
194 | 1 | equemene | END IF |
195 | 1 | equemene | * |
196 | 1 | equemene | IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN |
197 | 1 | equemene | * |
198 | 1 | equemene | * Use blocked code initially. |
199 | 1 | equemene | * The last kk rows are handled by the block method. |
200 | 1 | equemene | * |
201 | 1 | equemene | M1 = MIN( M+1, N ) |
202 | 1 | equemene | KI = ( ( M-NX-1 ) / NB )*NB |
203 | 1 | equemene | KK = MIN( M, KI+NB ) |
204 | 1 | equemene | * |
205 | 1 | equemene | DO 20 I = M - KK + KI + 1, M - KK + 1, -NB |
206 | 1 | equemene | IB = MIN( M-I+1, NB ) |
207 | 1 | equemene | * |
208 | 1 | equemene | * Compute the TZ factorization of the current block |
209 | 1 | equemene | * A(i:i+ib-1,i:n) |
210 | 1 | equemene | * |
211 | 1 | equemene | CALL DLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ), |
212 | 1 | equemene | $ WORK ) |
213 | 1 | equemene | IF( I.GT.1 ) THEN |
214 | 1 | equemene | * |
215 | 1 | equemene | * Form the triangular factor of the block reflector |
216 | 1 | equemene | * H = H(i+ib-1) . . . H(i+1) H(i) |
217 | 1 | equemene | * |
218 | 1 | equemene | CALL DLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ), |
219 | 1 | equemene | $ LDA, TAU( I ), WORK, LDWORK ) |
220 | 1 | equemene | * |
221 | 1 | equemene | * Apply H to A(1:i-1,i:n) from the right |
222 | 1 | equemene | * |
223 | 1 | equemene | CALL DLARZB( 'Right', 'No transpose', 'Backward', |
224 | 1 | equemene | $ 'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ), |
225 | 1 | equemene | $ LDA, WORK, LDWORK, A( 1, I ), LDA, |
226 | 1 | equemene | $ WORK( IB+1 ), LDWORK ) |
227 | 1 | equemene | END IF |
228 | 1 | equemene | 20 CONTINUE |
229 | 1 | equemene | MU = I + NB - 1 |
230 | 1 | equemene | ELSE |
231 | 1 | equemene | MU = M |
232 | 1 | equemene | END IF |
233 | 1 | equemene | * |
234 | 1 | equemene | * Use unblocked code to factor the last or only block |
235 | 1 | equemene | * |
236 | 1 | equemene | IF( MU.GT.0 ) |
237 | 1 | equemene | $ CALL DLATRZ( MU, N, N-M, A, LDA, TAU, WORK ) |
238 | 1 | equemene | * |
239 | 1 | equemene | WORK( 1 ) = LWKOPT |
240 | 1 | equemene | * |
241 | 1 | equemene | RETURN |
242 | 1 | equemene | * |
243 | 1 | equemene | * End of DTZRZF |
244 | 1 | equemene | * |
245 | 1 | equemene | END |