Statistiques
| Révision :

root / src / lapack / double / dlasq3.f @ 2

Historique | Voir | Annoter | Télécharger (8,21 ko)

1 1 equemene
      SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
2 1 equemene
     $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
3 1 equemene
     $                   DN2, G, TAU )
4 1 equemene
*
5 1 equemene
*  -- LAPACK routine (version 3.2.2)                                    --
6 1 equemene
*
7 1 equemene
*  -- Contributed by Osni Marques of the Lawrence Berkeley National   --
8 1 equemene
*  -- Laboratory and Beresford Parlett of the Univ. of California at  --
9 1 equemene
*  -- Berkeley                                                        --
10 1 equemene
*  -- June 2010                                                       --
11 1 equemene
*
12 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
13 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
14 1 equemene
*
15 1 equemene
*     .. Scalar Arguments ..
16 1 equemene
      LOGICAL            IEEE
17 1 equemene
      INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
18 1 equemene
      DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
19 1 equemene
     $                   QMAX, SIGMA, TAU
20 1 equemene
*     ..
21 1 equemene
*     .. Array Arguments ..
22 1 equemene
      DOUBLE PRECISION   Z( * )
23 1 equemene
*     ..
24 1 equemene
*
25 1 equemene
*  Purpose
26 1 equemene
*  =======
27 1 equemene
*
28 1 equemene
*  DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
29 1 equemene
*  In case of failure it changes shifts, and tries again until output
30 1 equemene
*  is positive.
31 1 equemene
*
32 1 equemene
*  Arguments
33 1 equemene
*  =========
34 1 equemene
*
35 1 equemene
*  I0     (input) INTEGER
36 1 equemene
*         First index.
37 1 equemene
*
38 1 equemene
*  N0     (input/output) INTEGER
39 1 equemene
*         Last index.
40 1 equemene
*
41 1 equemene
*  Z      (input) DOUBLE PRECISION array, dimension ( 4*N )
42 1 equemene
*         Z holds the qd array.
43 1 equemene
*
44 1 equemene
*  PP     (input/output) INTEGER
45 1 equemene
*         PP=0 for ping, PP=1 for pong.
46 1 equemene
*         PP=2 indicates that flipping was applied to the Z array
47 1 equemene
*         and that the initial tests for deflation should not be
48 1 equemene
*         performed.
49 1 equemene
*
50 1 equemene
*  DMIN   (output) DOUBLE PRECISION
51 1 equemene
*         Minimum value of d.
52 1 equemene
*
53 1 equemene
*  SIGMA  (output) DOUBLE PRECISION
54 1 equemene
*         Sum of shifts used in current segment.
55 1 equemene
*
56 1 equemene
*  DESIG  (input/output) DOUBLE PRECISION
57 1 equemene
*         Lower order part of SIGMA
58 1 equemene
*
59 1 equemene
*  QMAX   (input) DOUBLE PRECISION
60 1 equemene
*         Maximum value of q.
61 1 equemene
*
62 1 equemene
*  NFAIL  (output) INTEGER
63 1 equemene
*         Number of times shift was too big.
64 1 equemene
*
65 1 equemene
*  ITER   (output) INTEGER
66 1 equemene
*         Number of iterations.
67 1 equemene
*
68 1 equemene
*  NDIV   (output) INTEGER
69 1 equemene
*         Number of divisions.
70 1 equemene
*
71 1 equemene
*  IEEE   (input) LOGICAL
72 1 equemene
*         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
73 1 equemene
*
74 1 equemene
*  TTYPE  (input/output) INTEGER
75 1 equemene
*         Shift type.
76 1 equemene
*
77 1 equemene
*  DMIN1  (input/output) DOUBLE PRECISION
78 1 equemene
*
79 1 equemene
*  DMIN2  (input/output) DOUBLE PRECISION
80 1 equemene
*
81 1 equemene
*  DN     (input/output) DOUBLE PRECISION
82 1 equemene
*
83 1 equemene
*  DN1    (input/output) DOUBLE PRECISION
84 1 equemene
*
85 1 equemene
*  DN2    (input/output) DOUBLE PRECISION
86 1 equemene
*
87 1 equemene
*  G      (input/output) DOUBLE PRECISION
88 1 equemene
*
89 1 equemene
*  TAU    (input/output) DOUBLE PRECISION
90 1 equemene
*
91 1 equemene
*         These are passed as arguments in order to save their values
92 1 equemene
*         between calls to DLASQ3.
93 1 equemene
*
94 1 equemene
*  =====================================================================
95 1 equemene
*
96 1 equemene
*     .. Parameters ..
97 1 equemene
      DOUBLE PRECISION   CBIAS
98 1 equemene
      PARAMETER          ( CBIAS = 1.50D0 )
99 1 equemene
      DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD
100 1 equemene
      PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
101 1 equemene
     $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
102 1 equemene
*     ..
103 1 equemene
*     .. Local Scalars ..
104 1 equemene
      INTEGER            IPN4, J4, N0IN, NN, TTYPE
105 1 equemene
      DOUBLE PRECISION   EPS, S, T, TEMP, TOL, TOL2
106 1 equemene
*     ..
107 1 equemene
*     .. External Subroutines ..
108 1 equemene
      EXTERNAL           DLASQ4, DLASQ5, DLASQ6
109 1 equemene
*     ..
110 1 equemene
*     .. External Function ..
111 1 equemene
      DOUBLE PRECISION   DLAMCH
112 1 equemene
      LOGICAL            DISNAN
113 1 equemene
      EXTERNAL           DISNAN, DLAMCH
114 1 equemene
*     ..
115 1 equemene
*     .. Intrinsic Functions ..
116 1 equemene
      INTRINSIC          ABS, MAX, MIN, SQRT
117 1 equemene
*     ..
118 1 equemene
*     .. Executable Statements ..
119 1 equemene
*
120 1 equemene
      N0IN = N0
121 1 equemene
      EPS = DLAMCH( 'Precision' )
122 1 equemene
      TOL = EPS*HUNDRD
123 1 equemene
      TOL2 = TOL**2
124 1 equemene
*
125 1 equemene
*     Check for deflation.
126 1 equemene
*
127 1 equemene
   10 CONTINUE
128 1 equemene
*
129 1 equemene
      IF( N0.LT.I0 )
130 1 equemene
     $   RETURN
131 1 equemene
      IF( N0.EQ.I0 )
132 1 equemene
     $   GO TO 20
133 1 equemene
      NN = 4*N0 + PP
134 1 equemene
      IF( N0.EQ.( I0+1 ) )
135 1 equemene
     $   GO TO 40
136 1 equemene
*
137 1 equemene
*     Check whether E(N0-1) is negligible, 1 eigenvalue.
138 1 equemene
*
139 1 equemene
      IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
140 1 equemene
     $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
141 1 equemene
     $   GO TO 30
142 1 equemene
*
143 1 equemene
   20 CONTINUE
144 1 equemene
*
145 1 equemene
      Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
146 1 equemene
      N0 = N0 - 1
147 1 equemene
      GO TO 10
148 1 equemene
*
149 1 equemene
*     Check  whether E(N0-2) is negligible, 2 eigenvalues.
150 1 equemene
*
151 1 equemene
   30 CONTINUE
152 1 equemene
*
153 1 equemene
      IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
154 1 equemene
     $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
155 1 equemene
     $   GO TO 50
156 1 equemene
*
157 1 equemene
   40 CONTINUE
158 1 equemene
*
159 1 equemene
      IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
160 1 equemene
         S = Z( NN-3 )
161 1 equemene
         Z( NN-3 ) = Z( NN-7 )
162 1 equemene
         Z( NN-7 ) = S
163 1 equemene
      END IF
164 1 equemene
      IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2 ) THEN
165 1 equemene
         T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
166 1 equemene
         S = Z( NN-3 )*( Z( NN-5 ) / T )
167 1 equemene
         IF( S.LE.T ) THEN
168 1 equemene
            S = Z( NN-3 )*( Z( NN-5 ) /
169 1 equemene
     $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )
170 1 equemene
         ELSE
171 1 equemene
            S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
172 1 equemene
         END IF
173 1 equemene
         T = Z( NN-7 ) + ( S+Z( NN-5 ) )
174 1 equemene
         Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
175 1 equemene
         Z( NN-7 ) = T
176 1 equemene
      END IF
177 1 equemene
      Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
178 1 equemene
      Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
179 1 equemene
      N0 = N0 - 2
180 1 equemene
      GO TO 10
181 1 equemene
*
182 1 equemene
   50 CONTINUE
183 1 equemene
      IF( PP.EQ.2 )
184 1 equemene
     $   PP = 0
185 1 equemene
*
186 1 equemene
*     Reverse the qd-array, if warranted.
187 1 equemene
*
188 1 equemene
      IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
189 1 equemene
         IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
190 1 equemene
            IPN4 = 4*( I0+N0 )
191 1 equemene
            DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
192 1 equemene
               TEMP = Z( J4-3 )
193 1 equemene
               Z( J4-3 ) = Z( IPN4-J4-3 )
194 1 equemene
               Z( IPN4-J4-3 ) = TEMP
195 1 equemene
               TEMP = Z( J4-2 )
196 1 equemene
               Z( J4-2 ) = Z( IPN4-J4-2 )
197 1 equemene
               Z( IPN4-J4-2 ) = TEMP
198 1 equemene
               TEMP = Z( J4-1 )
199 1 equemene
               Z( J4-1 ) = Z( IPN4-J4-5 )
200 1 equemene
               Z( IPN4-J4-5 ) = TEMP
201 1 equemene
               TEMP = Z( J4 )
202 1 equemene
               Z( J4 ) = Z( IPN4-J4-4 )
203 1 equemene
               Z( IPN4-J4-4 ) = TEMP
204 1 equemene
   60       CONTINUE
205 1 equemene
            IF( N0-I0.LE.4 ) THEN
206 1 equemene
               Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
207 1 equemene
               Z( 4*N0-PP ) = Z( 4*I0-PP )
208 1 equemene
            END IF
209 1 equemene
            DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
210 1 equemene
            Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
211 1 equemene
     $                            Z( 4*I0+PP+3 ) )
212 1 equemene
            Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
213 1 equemene
     $                          Z( 4*I0-PP+4 ) )
214 1 equemene
            QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
215 1 equemene
            DMIN = -ZERO
216 1 equemene
         END IF
217 1 equemene
      END IF
218 1 equemene
*
219 1 equemene
*     Choose a shift.
220 1 equemene
*
221 1 equemene
      CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
222 1 equemene
     $             DN2, TAU, TTYPE, G )
223 1 equemene
*
224 1 equemene
*     Call dqds until DMIN > 0.
225 1 equemene
*
226 1 equemene
   70 CONTINUE
227 1 equemene
*
228 1 equemene
      CALL DLASQ5( I0, N0, Z, PP, TAU, DMIN, DMIN1, DMIN2, DN,
229 1 equemene
     $             DN1, DN2, IEEE )
230 1 equemene
*
231 1 equemene
      NDIV = NDIV + ( N0-I0+2 )
232 1 equemene
      ITER = ITER + 1
233 1 equemene
*
234 1 equemene
*     Check status.
235 1 equemene
*
236 1 equemene
      IF( DMIN.GE.ZERO .AND. DMIN1.GT.ZERO ) THEN
237 1 equemene
*
238 1 equemene
*        Success.
239 1 equemene
*
240 1 equemene
         GO TO 90
241 1 equemene
*
242 1 equemene
      ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
243 1 equemene
     $         Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
244 1 equemene
     $         ABS( DN ).LT.TOL*SIGMA ) THEN
245 1 equemene
*
246 1 equemene
*        Convergence hidden by negative DN.
247 1 equemene
*
248 1 equemene
         Z( 4*( N0-1 )-PP+2 ) = ZERO
249 1 equemene
         DMIN = ZERO
250 1 equemene
         GO TO 90
251 1 equemene
      ELSE IF( DMIN.LT.ZERO ) THEN
252 1 equemene
*
253 1 equemene
*        TAU too big. Select new TAU and try again.
254 1 equemene
*
255 1 equemene
         NFAIL = NFAIL + 1
256 1 equemene
         IF( TTYPE.LT.-22 ) THEN
257 1 equemene
*
258 1 equemene
*           Failed twice. Play it safe.
259 1 equemene
*
260 1 equemene
            TAU = ZERO
261 1 equemene
         ELSE IF( DMIN1.GT.ZERO ) THEN
262 1 equemene
*
263 1 equemene
*           Late failure. Gives excellent shift.
264 1 equemene
*
265 1 equemene
            TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
266 1 equemene
            TTYPE = TTYPE - 11
267 1 equemene
         ELSE
268 1 equemene
*
269 1 equemene
*           Early failure. Divide by 4.
270 1 equemene
*
271 1 equemene
            TAU = QURTR*TAU
272 1 equemene
            TTYPE = TTYPE - 12
273 1 equemene
         END IF
274 1 equemene
         GO TO 70
275 1 equemene
      ELSE IF( DISNAN( DMIN ) ) THEN
276 1 equemene
*
277 1 equemene
*        NaN.
278 1 equemene
*
279 1 equemene
         IF( TAU.EQ.ZERO ) THEN
280 1 equemene
            GO TO 80
281 1 equemene
         ELSE
282 1 equemene
            TAU = ZERO
283 1 equemene
            GO TO 70
284 1 equemene
         END IF
285 1 equemene
      ELSE
286 1 equemene
*
287 1 equemene
*        Possible underflow. Play it safe.
288 1 equemene
*
289 1 equemene
         GO TO 80
290 1 equemene
      END IF
291 1 equemene
*
292 1 equemene
*     Risk of underflow.
293 1 equemene
*
294 1 equemene
   80 CONTINUE
295 1 equemene
      CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
296 1 equemene
      NDIV = NDIV + ( N0-I0+2 )
297 1 equemene
      ITER = ITER + 1
298 1 equemene
      TAU = ZERO
299 1 equemene
*
300 1 equemene
   90 CONTINUE
301 1 equemene
      IF( TAU.LT.SIGMA ) THEN
302 1 equemene
         DESIG = DESIG + TAU
303 1 equemene
         T = SIGMA + DESIG
304 1 equemene
         DESIG = DESIG - ( T-SIGMA )
305 1 equemene
      ELSE
306 1 equemene
         T = SIGMA + TAU
307 1 equemene
         DESIG = SIGMA - ( T-TAU ) + DESIG
308 1 equemene
      END IF
309 1 equemene
      SIGMA = T
310 1 equemene
*
311 1 equemene
      RETURN
312 1 equemene
*
313 1 equemene
*     End of DLASQ3
314 1 equemene
*
315 1 equemene
      END