Statistiques
| Révision :

root / src / lapack / double / dlasd7.f @ 2

Historique | Voir | Annoter | Télécharger (13,96 ko)

1 1 equemene
      SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
2 1 equemene
     $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
3 1 equemene
     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
4 1 equemene
     $                   C, S, INFO )
5 1 equemene
*
6 1 equemene
*  -- LAPACK auxiliary routine (version 3.2) --
7 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
8 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
9 1 equemene
*     November 2006
10 1 equemene
*
11 1 equemene
*     .. Scalar Arguments ..
12 1 equemene
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
13 1 equemene
     $                   NR, SQRE
14 1 equemene
      DOUBLE PRECISION   ALPHA, BETA, C, S
15 1 equemene
*     ..
16 1 equemene
*     .. Array Arguments ..
17 1 equemene
      INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
18 1 equemene
     $                   IDXQ( * ), PERM( * )
19 1 equemene
      DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
20 1 equemene
     $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
21 1 equemene
     $                   ZW( * )
22 1 equemene
*     ..
23 1 equemene
*
24 1 equemene
*  Purpose
25 1 equemene
*  =======
26 1 equemene
*
27 1 equemene
*  DLASD7 merges the two sets of singular values together into a single
28 1 equemene
*  sorted set. Then it tries to deflate the size of the problem. There
29 1 equemene
*  are two ways in which deflation can occur:  when two or more singular
30 1 equemene
*  values are close together or if there is a tiny entry in the Z
31 1 equemene
*  vector. For each such occurrence the order of the related
32 1 equemene
*  secular equation problem is reduced by one.
33 1 equemene
*
34 1 equemene
*  DLASD7 is called from DLASD6.
35 1 equemene
*
36 1 equemene
*  Arguments
37 1 equemene
*  =========
38 1 equemene
*
39 1 equemene
*  ICOMPQ  (input) INTEGER
40 1 equemene
*          Specifies whether singular vectors are to be computed
41 1 equemene
*          in compact form, as follows:
42 1 equemene
*          = 0: Compute singular values only.
43 1 equemene
*          = 1: Compute singular vectors of upper
44 1 equemene
*               bidiagonal matrix in compact form.
45 1 equemene
*
46 1 equemene
*  NL     (input) INTEGER
47 1 equemene
*         The row dimension of the upper block. NL >= 1.
48 1 equemene
*
49 1 equemene
*  NR     (input) INTEGER
50 1 equemene
*         The row dimension of the lower block. NR >= 1.
51 1 equemene
*
52 1 equemene
*  SQRE   (input) INTEGER
53 1 equemene
*         = 0: the lower block is an NR-by-NR square matrix.
54 1 equemene
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
55 1 equemene
*
56 1 equemene
*         The bidiagonal matrix has
57 1 equemene
*         N = NL + NR + 1 rows and
58 1 equemene
*         M = N + SQRE >= N columns.
59 1 equemene
*
60 1 equemene
*  K      (output) INTEGER
61 1 equemene
*         Contains the dimension of the non-deflated matrix, this is
62 1 equemene
*         the order of the related secular equation. 1 <= K <=N.
63 1 equemene
*
64 1 equemene
*  D      (input/output) DOUBLE PRECISION array, dimension ( N )
65 1 equemene
*         On entry D contains the singular values of the two submatrices
66 1 equemene
*         to be combined. On exit D contains the trailing (N-K) updated
67 1 equemene
*         singular values (those which were deflated) sorted into
68 1 equemene
*         increasing order.
69 1 equemene
*
70 1 equemene
*  Z      (output) DOUBLE PRECISION array, dimension ( M )
71 1 equemene
*         On exit Z contains the updating row vector in the secular
72 1 equemene
*         equation.
73 1 equemene
*
74 1 equemene
*  ZW     (workspace) DOUBLE PRECISION array, dimension ( M )
75 1 equemene
*         Workspace for Z.
76 1 equemene
*
77 1 equemene
*  VF     (input/output) DOUBLE PRECISION array, dimension ( M )
78 1 equemene
*         On entry, VF(1:NL+1) contains the first components of all
79 1 equemene
*         right singular vectors of the upper block; and VF(NL+2:M)
80 1 equemene
*         contains the first components of all right singular vectors
81 1 equemene
*         of the lower block. On exit, VF contains the first components
82 1 equemene
*         of all right singular vectors of the bidiagonal matrix.
83 1 equemene
*
84 1 equemene
*  VFW    (workspace) DOUBLE PRECISION array, dimension ( M )
85 1 equemene
*         Workspace for VF.
86 1 equemene
*
87 1 equemene
*  VL     (input/output) DOUBLE PRECISION array, dimension ( M )
88 1 equemene
*         On entry, VL(1:NL+1) contains the  last components of all
89 1 equemene
*         right singular vectors of the upper block; and VL(NL+2:M)
90 1 equemene
*         contains the last components of all right singular vectors
91 1 equemene
*         of the lower block. On exit, VL contains the last components
92 1 equemene
*         of all right singular vectors of the bidiagonal matrix.
93 1 equemene
*
94 1 equemene
*  VLW    (workspace) DOUBLE PRECISION array, dimension ( M )
95 1 equemene
*         Workspace for VL.
96 1 equemene
*
97 1 equemene
*  ALPHA  (input) DOUBLE PRECISION
98 1 equemene
*         Contains the diagonal element associated with the added row.
99 1 equemene
*
100 1 equemene
*  BETA   (input) DOUBLE PRECISION
101 1 equemene
*         Contains the off-diagonal element associated with the added
102 1 equemene
*         row.
103 1 equemene
*
104 1 equemene
*  DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
105 1 equemene
*         Contains a copy of the diagonal elements (K-1 singular values
106 1 equemene
*         and one zero) in the secular equation.
107 1 equemene
*
108 1 equemene
*  IDX    (workspace) INTEGER array, dimension ( N )
109 1 equemene
*         This will contain the permutation used to sort the contents of
110 1 equemene
*         D into ascending order.
111 1 equemene
*
112 1 equemene
*  IDXP   (workspace) INTEGER array, dimension ( N )
113 1 equemene
*         This will contain the permutation used to place deflated
114 1 equemene
*         values of D at the end of the array. On output IDXP(2:K)
115 1 equemene
*         points to the nondeflated D-values and IDXP(K+1:N)
116 1 equemene
*         points to the deflated singular values.
117 1 equemene
*
118 1 equemene
*  IDXQ   (input) INTEGER array, dimension ( N )
119 1 equemene
*         This contains the permutation which separately sorts the two
120 1 equemene
*         sub-problems in D into ascending order.  Note that entries in
121 1 equemene
*         the first half of this permutation must first be moved one
122 1 equemene
*         position backward; and entries in the second half
123 1 equemene
*         must first have NL+1 added to their values.
124 1 equemene
*
125 1 equemene
*  PERM   (output) INTEGER array, dimension ( N )
126 1 equemene
*         The permutations (from deflation and sorting) to be applied
127 1 equemene
*         to each singular block. Not referenced if ICOMPQ = 0.
128 1 equemene
*
129 1 equemene
*  GIVPTR (output) INTEGER
130 1 equemene
*         The number of Givens rotations which took place in this
131 1 equemene
*         subproblem. Not referenced if ICOMPQ = 0.
132 1 equemene
*
133 1 equemene
*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
134 1 equemene
*         Each pair of numbers indicates a pair of columns to take place
135 1 equemene
*         in a Givens rotation. Not referenced if ICOMPQ = 0.
136 1 equemene
*
137 1 equemene
*  LDGCOL (input) INTEGER
138 1 equemene
*         The leading dimension of GIVCOL, must be at least N.
139 1 equemene
*
140 1 equemene
*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
141 1 equemene
*         Each number indicates the C or S value to be used in the
142 1 equemene
*         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
143 1 equemene
*
144 1 equemene
*  LDGNUM (input) INTEGER
145 1 equemene
*         The leading dimension of GIVNUM, must be at least N.
146 1 equemene
*
147 1 equemene
*  C      (output) DOUBLE PRECISION
148 1 equemene
*         C contains garbage if SQRE =0 and the C-value of a Givens
149 1 equemene
*         rotation related to the right null space if SQRE = 1.
150 1 equemene
*
151 1 equemene
*  S      (output) DOUBLE PRECISION
152 1 equemene
*         S contains garbage if SQRE =0 and the S-value of a Givens
153 1 equemene
*         rotation related to the right null space if SQRE = 1.
154 1 equemene
*
155 1 equemene
*  INFO   (output) INTEGER
156 1 equemene
*         = 0:  successful exit.
157 1 equemene
*         < 0:  if INFO = -i, the i-th argument had an illegal value.
158 1 equemene
*
159 1 equemene
*  Further Details
160 1 equemene
*  ===============
161 1 equemene
*
162 1 equemene
*  Based on contributions by
163 1 equemene
*     Ming Gu and Huan Ren, Computer Science Division, University of
164 1 equemene
*     California at Berkeley, USA
165 1 equemene
*
166 1 equemene
*  =====================================================================
167 1 equemene
*
168 1 equemene
*     .. Parameters ..
169 1 equemene
      DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
170 1 equemene
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
171 1 equemene
     $                   EIGHT = 8.0D+0 )
172 1 equemene
*     ..
173 1 equemene
*     .. Local Scalars ..
174 1 equemene
*
175 1 equemene
      INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
176 1 equemene
     $                   NLP1, NLP2
177 1 equemene
      DOUBLE PRECISION   EPS, HLFTOL, TAU, TOL, Z1
178 1 equemene
*     ..
179 1 equemene
*     .. External Subroutines ..
180 1 equemene
      EXTERNAL           DCOPY, DLAMRG, DROT, XERBLA
181 1 equemene
*     ..
182 1 equemene
*     .. External Functions ..
183 1 equemene
      DOUBLE PRECISION   DLAMCH, DLAPY2
184 1 equemene
      EXTERNAL           DLAMCH, DLAPY2
185 1 equemene
*     ..
186 1 equemene
*     .. Intrinsic Functions ..
187 1 equemene
      INTRINSIC          ABS, MAX
188 1 equemene
*     ..
189 1 equemene
*     .. Executable Statements ..
190 1 equemene
*
191 1 equemene
*     Test the input parameters.
192 1 equemene
*
193 1 equemene
      INFO = 0
194 1 equemene
      N = NL + NR + 1
195 1 equemene
      M = N + SQRE
196 1 equemene
*
197 1 equemene
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
198 1 equemene
         INFO = -1
199 1 equemene
      ELSE IF( NL.LT.1 ) THEN
200 1 equemene
         INFO = -2
201 1 equemene
      ELSE IF( NR.LT.1 ) THEN
202 1 equemene
         INFO = -3
203 1 equemene
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
204 1 equemene
         INFO = -4
205 1 equemene
      ELSE IF( LDGCOL.LT.N ) THEN
206 1 equemene
         INFO = -22
207 1 equemene
      ELSE IF( LDGNUM.LT.N ) THEN
208 1 equemene
         INFO = -24
209 1 equemene
      END IF
210 1 equemene
      IF( INFO.NE.0 ) THEN
211 1 equemene
         CALL XERBLA( 'DLASD7', -INFO )
212 1 equemene
         RETURN
213 1 equemene
      END IF
214 1 equemene
*
215 1 equemene
      NLP1 = NL + 1
216 1 equemene
      NLP2 = NL + 2
217 1 equemene
      IF( ICOMPQ.EQ.1 ) THEN
218 1 equemene
         GIVPTR = 0
219 1 equemene
      END IF
220 1 equemene
*
221 1 equemene
*     Generate the first part of the vector Z and move the singular
222 1 equemene
*     values in the first part of D one position backward.
223 1 equemene
*
224 1 equemene
      Z1 = ALPHA*VL( NLP1 )
225 1 equemene
      VL( NLP1 ) = ZERO
226 1 equemene
      TAU = VF( NLP1 )
227 1 equemene
      DO 10 I = NL, 1, -1
228 1 equemene
         Z( I+1 ) = ALPHA*VL( I )
229 1 equemene
         VL( I ) = ZERO
230 1 equemene
         VF( I+1 ) = VF( I )
231 1 equemene
         D( I+1 ) = D( I )
232 1 equemene
         IDXQ( I+1 ) = IDXQ( I ) + 1
233 1 equemene
   10 CONTINUE
234 1 equemene
      VF( 1 ) = TAU
235 1 equemene
*
236 1 equemene
*     Generate the second part of the vector Z.
237 1 equemene
*
238 1 equemene
      DO 20 I = NLP2, M
239 1 equemene
         Z( I ) = BETA*VF( I )
240 1 equemene
         VF( I ) = ZERO
241 1 equemene
   20 CONTINUE
242 1 equemene
*
243 1 equemene
*     Sort the singular values into increasing order
244 1 equemene
*
245 1 equemene
      DO 30 I = NLP2, N
246 1 equemene
         IDXQ( I ) = IDXQ( I ) + NLP1
247 1 equemene
   30 CONTINUE
248 1 equemene
*
249 1 equemene
*     DSIGMA, IDXC, IDXC, and ZW are used as storage space.
250 1 equemene
*
251 1 equemene
      DO 40 I = 2, N
252 1 equemene
         DSIGMA( I ) = D( IDXQ( I ) )
253 1 equemene
         ZW( I ) = Z( IDXQ( I ) )
254 1 equemene
         VFW( I ) = VF( IDXQ( I ) )
255 1 equemene
         VLW( I ) = VL( IDXQ( I ) )
256 1 equemene
   40 CONTINUE
257 1 equemene
*
258 1 equemene
      CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
259 1 equemene
*
260 1 equemene
      DO 50 I = 2, N
261 1 equemene
         IDXI = 1 + IDX( I )
262 1 equemene
         D( I ) = DSIGMA( IDXI )
263 1 equemene
         Z( I ) = ZW( IDXI )
264 1 equemene
         VF( I ) = VFW( IDXI )
265 1 equemene
         VL( I ) = VLW( IDXI )
266 1 equemene
   50 CONTINUE
267 1 equemene
*
268 1 equemene
*     Calculate the allowable deflation tolerence
269 1 equemene
*
270 1 equemene
      EPS = DLAMCH( 'Epsilon' )
271 1 equemene
      TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
272 1 equemene
      TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
273 1 equemene
*
274 1 equemene
*     There are 2 kinds of deflation -- first a value in the z-vector
275 1 equemene
*     is small, second two (or more) singular values are very close
276 1 equemene
*     together (their difference is small).
277 1 equemene
*
278 1 equemene
*     If the value in the z-vector is small, we simply permute the
279 1 equemene
*     array so that the corresponding singular value is moved to the
280 1 equemene
*     end.
281 1 equemene
*
282 1 equemene
*     If two values in the D-vector are close, we perform a two-sided
283 1 equemene
*     rotation designed to make one of the corresponding z-vector
284 1 equemene
*     entries zero, and then permute the array so that the deflated
285 1 equemene
*     singular value is moved to the end.
286 1 equemene
*
287 1 equemene
*     If there are multiple singular values then the problem deflates.
288 1 equemene
*     Here the number of equal singular values are found.  As each equal
289 1 equemene
*     singular value is found, an elementary reflector is computed to
290 1 equemene
*     rotate the corresponding singular subspace so that the
291 1 equemene
*     corresponding components of Z are zero in this new basis.
292 1 equemene
*
293 1 equemene
      K = 1
294 1 equemene
      K2 = N + 1
295 1 equemene
      DO 60 J = 2, N
296 1 equemene
         IF( ABS( Z( J ) ).LE.TOL ) THEN
297 1 equemene
*
298 1 equemene
*           Deflate due to small z component.
299 1 equemene
*
300 1 equemene
            K2 = K2 - 1
301 1 equemene
            IDXP( K2 ) = J
302 1 equemene
            IF( J.EQ.N )
303 1 equemene
     $         GO TO 100
304 1 equemene
         ELSE
305 1 equemene
            JPREV = J
306 1 equemene
            GO TO 70
307 1 equemene
         END IF
308 1 equemene
   60 CONTINUE
309 1 equemene
   70 CONTINUE
310 1 equemene
      J = JPREV
311 1 equemene
   80 CONTINUE
312 1 equemene
      J = J + 1
313 1 equemene
      IF( J.GT.N )
314 1 equemene
     $   GO TO 90
315 1 equemene
      IF( ABS( Z( J ) ).LE.TOL ) THEN
316 1 equemene
*
317 1 equemene
*        Deflate due to small z component.
318 1 equemene
*
319 1 equemene
         K2 = K2 - 1
320 1 equemene
         IDXP( K2 ) = J
321 1 equemene
      ELSE
322 1 equemene
*
323 1 equemene
*        Check if singular values are close enough to allow deflation.
324 1 equemene
*
325 1 equemene
         IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
326 1 equemene
*
327 1 equemene
*           Deflation is possible.
328 1 equemene
*
329 1 equemene
            S = Z( JPREV )
330 1 equemene
            C = Z( J )
331 1 equemene
*
332 1 equemene
*           Find sqrt(a**2+b**2) without overflow or
333 1 equemene
*           destructive underflow.
334 1 equemene
*
335 1 equemene
            TAU = DLAPY2( C, S )
336 1 equemene
            Z( J ) = TAU
337 1 equemene
            Z( JPREV ) = ZERO
338 1 equemene
            C = C / TAU
339 1 equemene
            S = -S / TAU
340 1 equemene
*
341 1 equemene
*           Record the appropriate Givens rotation
342 1 equemene
*
343 1 equemene
            IF( ICOMPQ.EQ.1 ) THEN
344 1 equemene
               GIVPTR = GIVPTR + 1
345 1 equemene
               IDXJP = IDXQ( IDX( JPREV )+1 )
346 1 equemene
               IDXJ = IDXQ( IDX( J )+1 )
347 1 equemene
               IF( IDXJP.LE.NLP1 ) THEN
348 1 equemene
                  IDXJP = IDXJP - 1
349 1 equemene
               END IF
350 1 equemene
               IF( IDXJ.LE.NLP1 ) THEN
351 1 equemene
                  IDXJ = IDXJ - 1
352 1 equemene
               END IF
353 1 equemene
               GIVCOL( GIVPTR, 2 ) = IDXJP
354 1 equemene
               GIVCOL( GIVPTR, 1 ) = IDXJ
355 1 equemene
               GIVNUM( GIVPTR, 2 ) = C
356 1 equemene
               GIVNUM( GIVPTR, 1 ) = S
357 1 equemene
            END IF
358 1 equemene
            CALL DROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
359 1 equemene
            CALL DROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
360 1 equemene
            K2 = K2 - 1
361 1 equemene
            IDXP( K2 ) = JPREV
362 1 equemene
            JPREV = J
363 1 equemene
         ELSE
364 1 equemene
            K = K + 1
365 1 equemene
            ZW( K ) = Z( JPREV )
366 1 equemene
            DSIGMA( K ) = D( JPREV )
367 1 equemene
            IDXP( K ) = JPREV
368 1 equemene
            JPREV = J
369 1 equemene
         END IF
370 1 equemene
      END IF
371 1 equemene
      GO TO 80
372 1 equemene
   90 CONTINUE
373 1 equemene
*
374 1 equemene
*     Record the last singular value.
375 1 equemene
*
376 1 equemene
      K = K + 1
377 1 equemene
      ZW( K ) = Z( JPREV )
378 1 equemene
      DSIGMA( K ) = D( JPREV )
379 1 equemene
      IDXP( K ) = JPREV
380 1 equemene
*
381 1 equemene
  100 CONTINUE
382 1 equemene
*
383 1 equemene
*     Sort the singular values into DSIGMA. The singular values which
384 1 equemene
*     were not deflated go into the first K slots of DSIGMA, except
385 1 equemene
*     that DSIGMA(1) is treated separately.
386 1 equemene
*
387 1 equemene
      DO 110 J = 2, N
388 1 equemene
         JP = IDXP( J )
389 1 equemene
         DSIGMA( J ) = D( JP )
390 1 equemene
         VFW( J ) = VF( JP )
391 1 equemene
         VLW( J ) = VL( JP )
392 1 equemene
  110 CONTINUE
393 1 equemene
      IF( ICOMPQ.EQ.1 ) THEN
394 1 equemene
         DO 120 J = 2, N
395 1 equemene
            JP = IDXP( J )
396 1 equemene
            PERM( J ) = IDXQ( IDX( JP )+1 )
397 1 equemene
            IF( PERM( J ).LE.NLP1 ) THEN
398 1 equemene
               PERM( J ) = PERM( J ) - 1
399 1 equemene
            END IF
400 1 equemene
  120    CONTINUE
401 1 equemene
      END IF
402 1 equemene
*
403 1 equemene
*     The deflated singular values go back into the last N - K slots of
404 1 equemene
*     D.
405 1 equemene
*
406 1 equemene
      CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
407 1 equemene
*
408 1 equemene
*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
409 1 equemene
*     VL(M).
410 1 equemene
*
411 1 equemene
      DSIGMA( 1 ) = ZERO
412 1 equemene
      HLFTOL = TOL / TWO
413 1 equemene
      IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
414 1 equemene
     $   DSIGMA( 2 ) = HLFTOL
415 1 equemene
      IF( M.GT.N ) THEN
416 1 equemene
         Z( 1 ) = DLAPY2( Z1, Z( M ) )
417 1 equemene
         IF( Z( 1 ).LE.TOL ) THEN
418 1 equemene
            C = ONE
419 1 equemene
            S = ZERO
420 1 equemene
            Z( 1 ) = TOL
421 1 equemene
         ELSE
422 1 equemene
            C = Z1 / Z( 1 )
423 1 equemene
            S = -Z( M ) / Z( 1 )
424 1 equemene
         END IF
425 1 equemene
         CALL DROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
426 1 equemene
         CALL DROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
427 1 equemene
      ELSE
428 1 equemene
         IF( ABS( Z1 ).LE.TOL ) THEN
429 1 equemene
            Z( 1 ) = TOL
430 1 equemene
         ELSE
431 1 equemene
            Z( 1 ) = Z1
432 1 equemene
         END IF
433 1 equemene
      END IF
434 1 equemene
*
435 1 equemene
*     Restore Z, VF, and VL.
436 1 equemene
*
437 1 equemene
      CALL DCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
438 1 equemene
      CALL DCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
439 1 equemene
      CALL DCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
440 1 equemene
*
441 1 equemene
      RETURN
442 1 equemene
*
443 1 equemene
*     End of DLASD7
444 1 equemene
*
445 1 equemene
      END