Statistiques
| Révision :

root / src / lapack / double / dlarzt.f @ 2

Historique | Voir | Annoter | Télécharger (5,87 ko)

1 1 equemene
      SUBROUTINE DLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
2 1 equemene
*
3 1 equemene
*  -- LAPACK routine (version 3.2) --
4 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 1 equemene
*     November 2006
7 1 equemene
*
8 1 equemene
*     .. Scalar Arguments ..
9 1 equemene
      CHARACTER          DIRECT, STOREV
10 1 equemene
      INTEGER            K, LDT, LDV, N
11 1 equemene
*     ..
12 1 equemene
*     .. Array Arguments ..
13 1 equemene
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
14 1 equemene
*     ..
15 1 equemene
*
16 1 equemene
*  Purpose
17 1 equemene
*  =======
18 1 equemene
*
19 1 equemene
*  DLARZT forms the triangular factor T of a real block reflector
20 1 equemene
*  H of order > n, which is defined as a product of k elementary
21 1 equemene
*  reflectors.
22 1 equemene
*
23 1 equemene
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
24 1 equemene
*
25 1 equemene
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
26 1 equemene
*
27 1 equemene
*  If STOREV = 'C', the vector which defines the elementary reflector
28 1 equemene
*  H(i) is stored in the i-th column of the array V, and
29 1 equemene
*
30 1 equemene
*     H  =  I - V * T * V'
31 1 equemene
*
32 1 equemene
*  If STOREV = 'R', the vector which defines the elementary reflector
33 1 equemene
*  H(i) is stored in the i-th row of the array V, and
34 1 equemene
*
35 1 equemene
*     H  =  I - V' * T * V
36 1 equemene
*
37 1 equemene
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
38 1 equemene
*
39 1 equemene
*  Arguments
40 1 equemene
*  =========
41 1 equemene
*
42 1 equemene
*  DIRECT  (input) CHARACTER*1
43 1 equemene
*          Specifies the order in which the elementary reflectors are
44 1 equemene
*          multiplied to form the block reflector:
45 1 equemene
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
46 1 equemene
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
47 1 equemene
*
48 1 equemene
*  STOREV  (input) CHARACTER*1
49 1 equemene
*          Specifies how the vectors which define the elementary
50 1 equemene
*          reflectors are stored (see also Further Details):
51 1 equemene
*          = 'C': columnwise                        (not supported yet)
52 1 equemene
*          = 'R': rowwise
53 1 equemene
*
54 1 equemene
*  N       (input) INTEGER
55 1 equemene
*          The order of the block reflector H. N >= 0.
56 1 equemene
*
57 1 equemene
*  K       (input) INTEGER
58 1 equemene
*          The order of the triangular factor T (= the number of
59 1 equemene
*          elementary reflectors). K >= 1.
60 1 equemene
*
61 1 equemene
*  V       (input/output) DOUBLE PRECISION array, dimension
62 1 equemene
*                               (LDV,K) if STOREV = 'C'
63 1 equemene
*                               (LDV,N) if STOREV = 'R'
64 1 equemene
*          The matrix V. See further details.
65 1 equemene
*
66 1 equemene
*  LDV     (input) INTEGER
67 1 equemene
*          The leading dimension of the array V.
68 1 equemene
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
69 1 equemene
*
70 1 equemene
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
71 1 equemene
*          TAU(i) must contain the scalar factor of the elementary
72 1 equemene
*          reflector H(i).
73 1 equemene
*
74 1 equemene
*  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
75 1 equemene
*          The k by k triangular factor T of the block reflector.
76 1 equemene
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
77 1 equemene
*          lower triangular. The rest of the array is not used.
78 1 equemene
*
79 1 equemene
*  LDT     (input) INTEGER
80 1 equemene
*          The leading dimension of the array T. LDT >= K.
81 1 equemene
*
82 1 equemene
*  Further Details
83 1 equemene
*  ===============
84 1 equemene
*
85 1 equemene
*  Based on contributions by
86 1 equemene
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
87 1 equemene
*
88 1 equemene
*  The shape of the matrix V and the storage of the vectors which define
89 1 equemene
*  the H(i) is best illustrated by the following example with n = 5 and
90 1 equemene
*  k = 3. The elements equal to 1 are not stored; the corresponding
91 1 equemene
*  array elements are modified but restored on exit. The rest of the
92 1 equemene
*  array is not used.
93 1 equemene
*
94 1 equemene
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
95 1 equemene
*
96 1 equemene
*                                              ______V_____
97 1 equemene
*         ( v1 v2 v3 )                        /            \
98 1 equemene
*         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
99 1 equemene
*     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
100 1 equemene
*         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
101 1 equemene
*         ( v1 v2 v3 )
102 1 equemene
*            .  .  .
103 1 equemene
*            .  .  .
104 1 equemene
*            1  .  .
105 1 equemene
*               1  .
106 1 equemene
*                  1
107 1 equemene
*
108 1 equemene
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
109 1 equemene
*
110 1 equemene
*                                                        ______V_____
111 1 equemene
*            1                                          /            \
112 1 equemene
*            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
113 1 equemene
*            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
114 1 equemene
*            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
115 1 equemene
*            .  .  .
116 1 equemene
*         ( v1 v2 v3 )
117 1 equemene
*         ( v1 v2 v3 )
118 1 equemene
*     V = ( v1 v2 v3 )
119 1 equemene
*         ( v1 v2 v3 )
120 1 equemene
*         ( v1 v2 v3 )
121 1 equemene
*
122 1 equemene
*  =====================================================================
123 1 equemene
*
124 1 equemene
*     .. Parameters ..
125 1 equemene
      DOUBLE PRECISION   ZERO
126 1 equemene
      PARAMETER          ( ZERO = 0.0D+0 )
127 1 equemene
*     ..
128 1 equemene
*     .. Local Scalars ..
129 1 equemene
      INTEGER            I, INFO, J
130 1 equemene
*     ..
131 1 equemene
*     .. External Subroutines ..
132 1 equemene
      EXTERNAL           DGEMV, DTRMV, XERBLA
133 1 equemene
*     ..
134 1 equemene
*     .. External Functions ..
135 1 equemene
      LOGICAL            LSAME
136 1 equemene
      EXTERNAL           LSAME
137 1 equemene
*     ..
138 1 equemene
*     .. Executable Statements ..
139 1 equemene
*
140 1 equemene
*     Check for currently supported options
141 1 equemene
*
142 1 equemene
      INFO = 0
143 1 equemene
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
144 1 equemene
         INFO = -1
145 1 equemene
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
146 1 equemene
         INFO = -2
147 1 equemene
      END IF
148 1 equemene
      IF( INFO.NE.0 ) THEN
149 1 equemene
         CALL XERBLA( 'DLARZT', -INFO )
150 1 equemene
         RETURN
151 1 equemene
      END IF
152 1 equemene
*
153 1 equemene
      DO 20 I = K, 1, -1
154 1 equemene
         IF( TAU( I ).EQ.ZERO ) THEN
155 1 equemene
*
156 1 equemene
*           H(i)  =  I
157 1 equemene
*
158 1 equemene
            DO 10 J = I, K
159 1 equemene
               T( J, I ) = ZERO
160 1 equemene
   10       CONTINUE
161 1 equemene
         ELSE
162 1 equemene
*
163 1 equemene
*           general case
164 1 equemene
*
165 1 equemene
            IF( I.LT.K ) THEN
166 1 equemene
*
167 1 equemene
*              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)'
168 1 equemene
*
169 1 equemene
               CALL DGEMV( 'No transpose', K-I, N, -TAU( I ),
170 1 equemene
     $                     V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
171 1 equemene
     $                     T( I+1, I ), 1 )
172 1 equemene
*
173 1 equemene
*              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
174 1 equemene
*
175 1 equemene
               CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
176 1 equemene
     $                     T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
177 1 equemene
            END IF
178 1 equemene
            T( I, I ) = TAU( I )
179 1 equemene
         END IF
180 1 equemene
   20 CONTINUE
181 1 equemene
      RETURN
182 1 equemene
*
183 1 equemene
*     End of DLARZT
184 1 equemene
*
185 1 equemene
      END